**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# On Sets with Cardinality Constraints in Satisfiability Modulo Theories

Abstract

Boolean Algebra with Presburger Arithmetic (BAPA) is a decidable logic that can express constraints on sets of elements and their cardinalities. Problems from verification of complex properties of software often contain fragments that belong to quantifier-free BAPA (QFBAPA). Deciding the satisfiability of QFBAPA formulas has been shown to be NP-complete using an eager reduction to quantifier-free Presburger arithmetic that exploits a sparse-solution property. In contrast to many other NP-complete problems (such as quantifier-free first-order logic or linear arithmetic), the applications of QFBAPA to a broader set of problems has so far been hindered by the lack of an efficient implementation that can be used alongside other efficient decision procedures. We overcome these limitations by extending the efficient SMT solver Z3 with the ability to reason about cardinality constraints. Our implementation uses the DPLL(T) mechanism of Z3 to reason about the top-level propositional structure of a QFBAPA formula, improving the efficiency compared to previous implementations. Moreover, we present a new algorithm for automated decomposition of QFBAPA formulas. Our algorithm alleviates the exponential explosion of considering all Venn regions, significantly improving the tractability of formulas with many set variables. Because it is implemented as a theory plugin, our implementation enables Z3 to prove formulas that use QFBAPA constructs alongside constructs from other theories that Z3 supports (e.g. linear arithmetic, uninterpreted function symbols, algebraic data types), as well as in formulas with quantifiers. We have applied our implementation to verification of functional programs; we show it can automatically prove formulas that no automated approach was reported to be able to prove before.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (57)

Related concepts (47)

Related MOOCs (18)

Satisfiability modulo theories

In computer science and mathematical logic, satisfiability modulo theories (SMT) is the problem of determining whether a mathematical formula is satisfiable. It generalizes the Boolean satisfiability problem (SAT) to more complex formulas involving real numbers, integers, and/or various data structures such as lists, arrays, bit vectors, and strings. The name is derived from the fact that these expressions are interpreted within ("modulo") a certain formal theory in first-order logic with equality (often disallowing quantifiers).

Presburger arithmetic

Presburger arithmetic is the first-order theory of the natural numbers with addition, named in honor of Mojżesz Presburger, who introduced it in 1929. The signature of Presburger arithmetic contains only the addition operation and equality, omitting the multiplication operation entirely. The axioms include a schema of induction. Presburger arithmetic is much weaker than Peano arithmetic, which includes both addition and multiplication operations. Unlike Peano arithmetic, Presburger arithmetic is a decidable theory.

Automated theorem proving

Automated theorem proving (also known as ATP or automated deduction) is a subfield of automated reasoning and mathematical logic dealing with proving mathematical theorems by computer programs. Automated reasoning over mathematical proof was a major impetus for the development of computer science. While the roots of formalised logic go back to Aristotle, the end of the 19th and early 20th centuries saw the development of modern logic and formalised mathematics.

Parallel programming

With every smartphone and computer now boasting multiple processors, the use of functional ideas to facilitate parallel programming is becoming increasingly widespread. In this course, you'll learn th

Parallel programming

With every smartphone and computer now boasting multiple processors, the use of functional ideas to facilitate parallel programming is becoming increasingly widespread. In this course, you'll learn th

Parallel programming

With every smartphone and computer now boasting multiple processors, the use of functional ideas to facilitate parallel programming is becoming increasingly widespread. In this course, you'll learn th

We study the decision problem for the existential fragment of the theory of power structures. We prove complexity results that parallel the decidability results of Feferman-Vaught for the theories of product structures thereby showing that the construction ...

,

We show that the satisfiability problem for the quantifier-free theory of product structures with the equicardinality relation is inNP. As an application, we extend the combinatory array logic fragmentto handle cardinality constraints. The resulting fragme ...

,

Automatic verification of programs manipulating arrays relies on specialised decision procedures. A methodology to classify the theories handled by these procedures is introduced. It is based on decomposition theorems in the style of Feferman and Vaught. T ...