Scale spaceScale-space theory is a framework for multi-scale signal representation developed by the computer vision, and signal processing communities with complementary motivations from physics and biological vision. It is a formal theory for handling image structures at different scales, by representing an image as a one-parameter family of smoothed images, the scale-space representation, parametrized by the size of the smoothing kernel used for suppressing fine-scale structures.
Knapsack problemThe knapsack problem is the following problem in combinatorial optimization: Given a set of items, each with a weight and a value, determine which items to include in the collection so that the total weight is less than or equal to a given limit and the total value is as large as possible. It derives its name from the problem faced by someone who is constrained by a fixed-size knapsack and must fill it with the most valuable items.
Time hierarchy theoremIn computational complexity theory, the time hierarchy theorems are important statements about time-bounded computation on Turing machines. Informally, these theorems say that given more time, a Turing machine can solve more problems. For example, there are problems that can be solved with n2 time but not n time. The time hierarchy theorem for deterministic multi-tape Turing machines was first proven by Richard E. Stearns and Juris Hartmanis in 1965. It was improved a year later when F. C. Hennie and Richard E.
Loop quantum cosmologyLoop quantum cosmology (LQC) is a finite, symmetry-reduced model of loop quantum gravity (LQG) that predicts a "quantum bridge" between contracting and expanding cosmological branches. The distinguishing feature of LQC is the prominent role played by the quantum geometry effects of loop quantum gravity (LQG). In particular, quantum geometry creates a brand new repulsive force which is totally negligible at low space-time curvature but rises very rapidly in the Planck regime, overwhelming the classical gravitational attraction and thereby resolving singularities of general relativity.