Vector (mathematics and physics)In mathematics and physics, vector is a term that refers colloquially to some quantities that cannot be expressed by a single number (a scalar), or to elements of some vector spaces. Historically, vectors were introduced in geometry and physics (typically in mechanics) for quantities that have both a magnitude and a direction, such as displacements, forces and velocity. Such quantities are represented by geometric vectors in the same way as distances, masses and time are represented by real numbers.
Four-vectorIn special relativity, a four-vector (or 4-vector) is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a representation space of the standard representation of the Lorentz group, the (1/2,1/2) representation. It differs from a Euclidean vector in how its magnitude is determined.
Fock spaceThe Fock space is an algebraic construction used in quantum mechanics to construct the quantum states space of a variable or unknown number of identical particles from a single particle Hilbert space H. It is named after V. A. Fock who first introduced it in his 1932 paper "Konfigurationsraum und zweite Quantelung" ("Configuration space and second quantization"). Informally, a Fock space is the sum of a set of Hilbert spaces representing zero particle states, one particle states, two particle states, and so on.
Scalar (physics)In physics, scalars (or scalar quantities) are physical quantities that are unaffected by changes to a vector space basis (i.e., a coordinate system transformation). Scalars are often accompanied by units of measurement, as in "10cm". Examples of scalar quantities are mass, distance, charge, volume, time, speed, and the magnitude of physical vectors in general (such as velocity). A change of a vector space basis changes the description of a vector in terms of the basis used but does not change the vector itself, while a scalar has nothing to do with this change.
SuperspaceSuperspace is the coordinate space of a theory exhibiting supersymmetry. In such a formulation, along with ordinary space dimensions x, y, z, ..., there are also "anticommuting" dimensions whose coordinates are labeled in Grassmann numbers rather than real numbers. The ordinary space dimensions correspond to bosonic degrees of freedom, the anticommuting dimensions to fermionic degrees of freedom. The word "superspace" was first used by John Wheeler in an unrelated sense to describe the configuration space of general relativity; for example, this usage may be seen in his 1973 textbook Gravitation.
Supersymmetry algebraIn theoretical physics, a supersymmetry algebra (or SUSY algebra) is a mathematical formalism for describing the relation between bosons and fermions. The supersymmetry algebra contains not only the Poincaré algebra and a compact subalgebra of internal symmetries, but also contains some fermionic supercharges, transforming as a sum of N real spinor representations of the Poincaré group. Such symmetries are allowed by the Haag–Łopuszański–Sohnius theorem. When N>1 the algebra is said to have extended supersymmetry.