Recovery of clustered sparse signals from compressive measurements
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Approximating a signal or an image with a sparse linear expansion from an overcomplete dictionary of atoms is an extremely useful tool to solve many signal processing problems. Finding the sparsest approximation of a signal from an arbitrary dictionary is ...
This report is the extension to the case of sparse approximations of our previous study on the effects of introducing a priori knowledge to solve the recovery of sparse representations when overcomplete dictionaries are used. Greedy algorithms and Basis Pu ...
In many applications - such as compression, de-noising and source separation - a good and efficient signal representation is characterized by sparsity. This means that many coefficients are close to zero, while only few ones have a non-negligible amplitude ...
This report studies the effect of introducing a priori knowledge to recover sparse representations when overcomplete dictionaries are used. We focus mainly on Greedy algorithms and Basis Pursuit as for our algorithmic basement, while a priori is incorporat ...