Beta prime distributionIn probability theory and statistics, the beta prime distribution (also known as inverted beta distribution or beta distribution of the second kind) is an absolutely continuous probability distribution. If has a beta distribution, then the odds has a beta prime distribution. Beta prime distribution is defined for with two parameters α and β, having the probability density function: where B is the Beta function. The cumulative distribution function is where I is the regularized incomplete beta function.
Complex normal distributionIn probability theory, the family of complex normal distributions, denoted or , characterizes complex random variables whose real and imaginary parts are jointly normal. The complex normal family has three parameters: location parameter μ, covariance matrix , and the relation matrix . The standard complex normal is the univariate distribution with , , and . An important subclass of complex normal family is called the circularly-symmetric (central) complex normal and corresponds to the case of zero relation matrix and zero mean: and .
Order statisticIn statistics, the kth order statistic of a statistical sample is equal to its kth-smallest value. Together with rank statistics, order statistics are among the most fundamental tools in non-parametric statistics and inference. Important special cases of the order statistics are the minimum and maximum value of a sample, and (with some qualifications discussed below) the sample median and other sample quantiles.
Erlang distributionThe Erlang distribution is a two-parameter family of continuous probability distributions with support . The two parameters are: a positive integer the "shape", and a positive real number the "rate". The "scale", the reciprocal of the rate, is sometimes used instead. The Erlang distribution is the distribution of a sum of independent exponential variables with mean each. Equivalently, it is the distribution of the time until the kth event of a Poisson process with a rate of .
Lomax distributionThe Lomax distribution, conditionally also called the Pareto Type II distribution, is a heavy-tail probability distribution used in business, economics, actuarial science, queueing theory and Internet traffic modeling. It is named after K. S. Lomax. It is essentially a Pareto distribution that has been shifted so that its support begins at zero. The probability density function (pdf) for the Lomax distribution is given by with shape parameter and scale parameter .
Log–log plotIn science and engineering, a log–log graph or log–log plot is a two-dimensional graph of numerical data that uses logarithmic scales on both the horizontal and vertical axes. Power functions – relationships of the form – appear as straight lines in a log–log graph, with the exponent corresponding to the slope, and the coefficient corresponding to the intercept. Thus these graphs are very useful for recognizing these relationships and estimating parameters. Any base can be used for the logarithm, though most commonly base 10 (common logs) are used.
Gini coefficientIn economics, the Gini coefficient (ˈdʒiːni ), also known as the Gini index or Gini ratio, is a measure of statistical dispersion intended to represent the income inequality, the wealth inequality, or the consumption inequality within a nation or a social group. It was developed by Italian statistician and sociologist Corrado Gini. The Gini coefficient measures the inequality among the values of a frequency distribution, such as levels of income.