Fault injectionIn computer science, fault injection is a testing technique for understanding how computing systems behave when stressed in unusual ways. This can be achieved using physical- or software-based means, or using a hybrid approach. Widely studied physical fault injections include the application of high voltages, extreme temperatures and electromagnetic pulses on electronic components, such as computer memory and central processing units.
Software testingSoftware testing is the act of examining the artifacts and the behavior of the software under test by validation and verification. Software testing can also provide an objective, independent view of the software to allow the business to appreciate and understand the risks of software implementation. Test techniques include, but are not necessarily limited to: analyzing the product requirements for completeness and correctness in various contexts like industry perspective, business perspective, feasibility and viability of implementation, usability, performance, security, infrastructure considerations, etc.
Unit testingIn computer programming, unit testing is a software testing method by which individual units of source code—sets of one or more computer program modules together with associated control data, usage procedures, and operating procedures—are tested to determine whether they are fit for use. It is a standard step in development and implementation approaches such as Agile. Before unit testing, capture and replay testing tools were the norm. In 1997, Kent Beck and Erich Gamma developed and released JUnit, a unit test framework that became popular with Java developers.
Software development processIn software engineering, a software development process is a process of planning and managing software development. It typically involves dividing software development work into smaller, parallel, or sequential steps or sub-processes to improve design and/or product management. It is also known as a software development life cycle (SDLC). The methodology may include the pre-definition of specific deliverables and artifacts that are created and completed by a project team to develop or maintain an application.
Test automationIn software testing, test automation is the use of software separate from the software being tested to control the execution of tests and the comparison of actual outcomes with predicted outcomes. Test automation can automate some repetitive but necessary tasks in a formalized testing process already in place, or perform additional testing that would be difficult to do manually. Test automation is critical for continuous delivery and continuous testing.
Software release life cycleThe software release life cycle is the process of developing, testing, and distributing a software product. It typically consists of several stages, such as pre-alpha, alpha, beta, and release candidate, before the final version, or "gold", is released to the public. Pre-alpha refers to the early stages of development, when the software is still being designed and built. Alpha testing is the first phase of formal testing, during which the software is tested internally using white-box techniques.
Robustness (computer science)In computer science, robustness is the ability of a computer system to cope with errors during execution and cope with erroneous input. Robustness can encompass many areas of computer science, such as robust programming, robust machine learning, and Robust Security Network. Formal techniques, such as fuzz testing, are essential to showing robustness since this type of testing involves invalid or unexpected inputs. Alternatively, fault injection can be used to test robustness.
System testingSystem testing is testing conducted on a complete integrated system to evaluate the system's compliance with its specified requirements. System testing takes, as its input, all of the integrated components that have passed integration testing. The purpose of integration testing is to detect any inconsistencies between the units that are integrated together (called assemblages). System testing seeks to detect defects both within the "inter-assemblages" and also within the system as a whole.
Regression testingRegression testing (rarely, non-regression testing) is re-running functional and non-functional tests to ensure that previously developed and tested software still performs as expected after a change. If not, that would be called a regression. Changes that may require regression testing include bug fixes, software enhancements, changes, and even substitution of electronic components (hardware). As regression test suites tend to grow with each found defect, test automation is frequently involved.
Software maintenanceSoftware maintenance in software engineering is the modification of a software product after delivery to correct faults, to improve performance or other attributes. A common perception of maintenance is that it merely involves fixing defects. However, one study indicated that over 80% of maintenance effort is used for non-corrective actions. This perception is perpetuated by users submitting problem reports that in reality are functionality enhancements to the system. More recent studies put the bug-fixing proportion closer to 21%.