Validation of 134Cs, 137Cs and 154Eu single ratios as burnup monitors for ultra-high burnup UO2 fuel
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The reactivity loss of PWR fuel with burnup has been investigated experimentally by measuring the reactivity worths of highly-burnt fuel samples in a PWR test lattice in the framework of the LWR-PROTEUS Phase II program. Seven UO2 samples cut from fuel rod ...
Microstructural evolution during in-pile irradiation, radiation damage effects and fission products behavior in UO2 nuclear fuel are key issues in understanding and for the modeling of the performance as well as safety characteristics of nuclear fuels in t ...
In the pebble-bed high temperature reactor under construction in China, called HTR-PM, the spherical fuel elements continuously flow downward in the cylindrical core. After the discharge, the burnup of each pebble is checked at the core outlet and, accordi ...
Currently, most Spent Nuclear Fuel (SNF) is kept safely in storage either at on-site facilities or at centralized interim storage sites. Moreover, many countries face delays in implementing their waste management programmes for SNF and high-level waste dis ...
Characteristics of the spent nuclear fuel (SNF) are typically calculated, requiring validation a priori. The validation process relies on the difference between calculations and measurements, namely the bias. Usually, predicting the bias based on benchmark ...
The present doctoral research aims at the appraisal of nodal core simulators used for the calculation of commercial boiling water reactor (BWR) cores, against measurements carried out at the Paul Scherrer Institute under the LWR-PROTEUS experimental progra ...
Recent LOCA tests with high burnup fuel at the OECD Halden Reactor Project and at Studsvik demonstrated the susceptibility of the fuel to fragment to small pieces, to relocate and possibly cause a hot-spot effect and to be dispersed in the event of claddin ...
Nuclear energy is among the most viable alternatives to our current fossil fuel-based energy economy. The mass deployment of nuclear energy as a low-emissions source requires the reprocessing of used nuclear fuel to recover fissile materials and mitigate r ...
In recent years, higher discharge burn-ups and initial fuel enrichments have led to more and more heterogeneous core configurations in light water reactors (LWRs), especially at the beginning of cycle when fresh fuel assemblies are loaded next to highly bu ...
The European nuclear fuel cycle (covering the EU-27, Switzerland and Ukraine) was modeled using material flow analysis (MFA).The analysis was based on publicly available data from nuclear energy agencies and industries, national trade offices, and nongover ...