Classical and quantum consistency of the DGP model
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We present constraints on extensions of the minimal cosmological models dominated by dark matter and dark energy, Lambda CDM and wCDM, by using a combined analysis of galaxy clustering and weak gravitational lensing from the first-year data of the Dark Ene ...
Quantum mechanics did not only deeply transform our world view down to a philosophical level, it is also expected to be key ingredient of future so-called quantum technologies. Indeed, quantum properties of matter such as isolated single particles or entan ...
We bootstrap the S matrix of massless particles in unitary, relativistic two dimensional quantum field theories. We find that the low energy expansion of such S matrices is strongly constrained by the existence of a UV completion. In the context of flux tu ...
We test general relativity (GR) at the effective redshift (z) over tilde similar to 1.5 by estimating the statistic E-G, a probe of gravity, on cosmological scales 19 - 190 h(-1)Mpc. This is the highest redshift and largest scale estimation of E-G so far. ...
We revisit the problem of constraining the weak field limit of the gravitational lagrangian from S-matrix properties. From unitarity and Lorentz invariance of the S-matrix of massless gravitons, we derive on-shell gauge invariance to consist on the transve ...
Combining the quantum scale invariance with the absence of new degrees of freedom above the electroweak scale leads to stability of the latter against perturbative quantum corrections. Nevertheless, the hierarchy between the weak and the Planck scales rema ...
The ability to manipulate particles has always been a fundamental aspect for developing and improving scattering and microscopytechniques used for material investigations. So far, microscopy applications have mostly relied on a classical treatment of the e ...
Quantum processors rely on classical electronic controllers to manipulate and read out the quantum state. As the performance of the quantum processor improves, non-idealities in the classical controller can become the performance bottleneck for the whole q ...
Mechanical oscillators are among the most important scientific tools in the modern physics. From the pioneering experiments in 18th by founding fathers of modern physics such as Newton, Hooke and Cavendish to the ground braking experiments in the 21th cent ...
Quantum effects scale up with the frequency of electromagnetic waves. Therefore, modern synchrotron sources of high-frequency x-rays-that can be visited by students either personally or online-offer an opportunity for a captivating introduction to basic qu ...