Publication

A DSS to Optimize Facings on the Shelf of a Retail Store

Prem Kumar
2010
Journal paper
Abstract

This paper aims to maximize the profitability of a set of brand SKUs stocked at a particular retailer by optimizing the number of facings for each product. Based on the past data, a set of variables such as retail price of different SKUs, linear footage that a particular manufacturer manages from the retailer, number of facings for each SKU and volume of sales for each SKU are identified. We develop a set of models, which will measure the volumetric impact of these instances on the overall revenue dollars and volume of sales in particular. One of the major issues in this problem is the relationship between Volume of Sales Vi and the number of facings Xi. If this relationship were linear, this optimization problem could have been treated as a MIP and solved accordingly. We treat this non-linear program by an innovative approximation technique and solve the objective using a piecewise approximation function.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (42)
Mathematical optimization
Mathematical optimization (alternatively spelled optimisation) or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. It is generally divided into two subfields: discrete optimization and continuous optimization. Optimization problems arise in all quantitative disciplines from computer science and engineering to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries.
Optimization problem
In mathematics, computer science and economics, an optimization problem is the problem of finding the best solution from all feasible solutions. Optimization problems can be divided into two categories, depending on whether the variables are continuous or discrete: An optimization problem with discrete variables is known as a discrete optimization, in which an object such as an integer, permutation or graph must be found from a countable set.
Linear programming
Linear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements are represented by linear relationships. Linear programming is a special case of mathematical programming (also known as mathematical optimization). More formally, linear programming is a technique for the optimization of a linear objective function, subject to linear equality and linear inequality constraints.
Show more
Related publications (127)

Augmented Lagrangian Methods for Provable and Scalable Machine Learning

Mehmet Fatih Sahin

Non-convex constrained optimization problems have become a powerful framework for modeling a wide range of machine learning problems, with applications in k-means clustering, large- scale semidefinite programs (SDPs), and various other tasks. As the perfor ...
EPFL2023

A Spatial Branch and Bound Algorithm for Continuous Pricing with Advanced Discrete Choice Demand Modeling

Michel Bierlaire

In this paper, we present a spatial branch and bound algorithm to tackle the continuous pricing problem, where demand is captured by an advanced discrete choice model (DCM). Advanced DCMs, like mixed logit or latent class models, are capable of modeling de ...
2023

Data-Driven Control and Optimization under Noisy and Uncertain Conditions

Baiwei Guo

Control systems operating in real-world environments often face disturbances arising from measurement noise and model mismatch. These factors can significantly impact the perfor- mance and safety of the system. In this thesis, we aim to leverage data to de ...
EPFL2023
Show more
Related MOOCs (32)
Introduction to optimization on smooth manifolds: first order methods
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Show more