Assembly Mechanisms and Cellular Effects of Bacterial Pore-Forming Toxins
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The receptor that mediates the specific uptake and intracellular transport of dimeric immunoglobulin A (IgA dimer) in mucosal and glandular epithelia is identical with a transmembrane precursor of secreted secretory component. During transport, the IgA dim ...
Aerolysin is a cytolytic toxin which forms channels in the plasma membranes of eucaryotic cells. The protein is secreted by Aeromonas hydrophila as an inactive protoxin. Its stability and water solubility are conferred by its ability to dimerize. Maturatio ...
Colicins A and N are pore-forming bacterial toxins that kill Escherichia coli cells. Their mode of action involves three steps; binding to specific receptors located in the outer membrane, translocation through this membrane and the periplasm, and channel ...
Aerolysin, a virulence factor secreted by Aeromonas hydrophila, is representative of a group of beta-sheet toxins that must form stable homooligomers in order to be able to insert into biological membranes and generate channels. Electron microscopy and ima ...
Colicins are unusual bacterial toxins because they are directed against close relatives of the producing strain. They kill their targets in one of three distinct ways; via a ribonuclease or deoxyribonuclease activity or by forming pores in the target cell' ...