Publication

Structuring and integrating human knowledge in demand forecasting: a judgemental adjustment approach

Related concepts (36)
Explicit knowledge
Explicit knowledge (also expressive knowledge) is knowledge that can be readily articulated, codified, stored and accessed. It can be expressed in formal and systematical language and shared in the form of data, scientific formulae, specifications, manuals and such like. It is easily codifiable and thus transmittable without loss of integrity once the syntactical rules required for deciphering it are known. Most forms of explicit knowledge can be stored in certain media. Explicit knowledge is often seen as complementary to tacit knowledge.
Knowledge transfer
Knowledge transfer is the sharing or disseminating of knowledge and the providing of inputs to problem solving. In organizational theory, knowledge transfer is the practical problem of transferring knowledge from one part of the organization to another. Like knowledge management, knowledge transfer seeks to organize, create, capture or distribute knowledge and ensure its availability for future users. It is considered to be more than just a communication problem.
Knowledge representation and reasoning
Knowledge representation and reasoning (KRR, KR&R, KR2) is the field of artificial intelligence (AI) dedicated to representing information about the world in a form that a computer system can use to solve complex tasks such as diagnosing a medical condition or having a dialog in a natural language. Knowledge representation incorporates findings from psychology about how humans solve problems and represent knowledge in order to design formalisms that will make complex systems easier to design and build.
Context-free language
In formal language theory, a context-free language (CFL) is a language generated by a context-free grammar (CFG). Context-free languages have many applications in programming languages, in particular, most arithmetic expressions are generated by context-free grammars. Different context-free grammars can generate the same context-free language. Intrinsic properties of the language can be distinguished from extrinsic properties of a particular grammar by comparing multiple grammars that describe the language.
Knowledge economy
The knowledge economy, or knowledge-based economy, is an economic system in which the production of goods and services is based principally on knowledge-intensive activities that contribute to advancement in technical and scientific innovation. The key element of value is the greater dependence on human capital and intellectual property as the source of innovative ideas, information and practices. Organisations are required to capitalise on this "knowledge" in their production to stimulate and deepen the business development process.
Consensus forecast
Used in a number of sciences, ranging from econometrics to meteorology, consensus forecasts are predictions of the future that are created by combining several separate forecasts which have often been created using different methodologies. Also known as combining forecasts, forecast averaging or model averaging (in econometrics and statistics) and committee machines, ensemble averaging or expert aggregation (in machine learning).
Forecast error
In statistics, a forecast error is the difference between the actual or real and the predicted or forecast value of a time series or any other phenomenon of interest. Since the forecast error is derived from the same scale of data, comparisons between the forecast errors of different series can only be made when the series are on the same scale. In simple cases, a forecast is compared with an outcome at a single time-point and a summary of forecast errors is constructed over a collection of such time-points.
Deterministic context-free grammar
In formal grammar theory, the deterministic context-free grammars (DCFGs) are a proper subset of the context-free grammars. They are the subset of context-free grammars that can be derived from deterministic pushdown automata, and they generate the deterministic context-free languages. DCFGs are always unambiguous, and are an important subclass of unambiguous CFGs; there are non-deterministic unambiguous CFGs, however. DCFGs are of great practical interest, as they can be parsed in linear time and in fact a parser can be automatically generated from the grammar by a parser generator.
Data warehouse
In computing, a data warehouse (DW or DWH), also known as an enterprise data warehouse (EDW), is a system used for reporting and data analysis and is considered a core component of business intelligence. Data warehouses are central repositories of integrated data from one or more disparate sources. They store current and historical data in one single place that are used for creating analytical reports for workers throughout the enterprise. This is beneficial for companies as it enables them to interrogate and draw insights from their data and make decisions.
Deterministic context-free language
In formal language theory, deterministic context-free languages (DCFL) are a proper subset of context-free languages. They are the context-free languages that can be accepted by a deterministic pushdown automaton. DCFLs are always unambiguous, meaning that they admit an unambiguous grammar. There are non-deterministic unambiguous CFLs, so DCFLs form a proper subset of unambiguous CFLs. DCFLs are of great practical interest, as they can be parsed in linear time, and various restricted forms of DCFGs admit simple practical parsers.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.