A high-resolution multi-sensor and multi-polarization Ground Penetrating Radar (GPR) dataset was acquired on a concrete retaining wall. This dataset was characterised as a low pass filter with the help of a moving window spectral analysis. In order to examine the benefits and limits of innovative processing strategies, the dataset was processed with three different methods: classical 2-D processing, full 3-D processing followed by data fusion and inverse scattering followed by data fusion. A comparison of the results for two layers of rebar present in the wall shows that the innovative approaches improve the results for near surface structures when compared to classical 2-D processing. For deeper structures, the benefits of the innovative approaches are limited because of the low pass properties of the concrete.
David Andrew Barry, Andrea Rinaldo, Paolo Perona, Seifeddine Jomaa, Mohsen Cheraghi, Andrea Cimatoribus