Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In the present study, we screened for subtilisin-like proprotein convertases (SPCs) that potentially regulate the activation of known growth factors during embryonic development. We isolated a novel protease, SPC7, as well as several known SPCs. SPC7, like SPC1, is expressed ubiquitously throughout development. In contrast, SPC4 and SPC6 exhibit dynamic expression patterns. SPC4 transcripts were initially detected in the granulosa cells of secondary follicles. Shortly after implantation, SPC4 transcripts are localized to extraembryonic cell populations, and at later stages are detected in discrete tissues including the primitive gut, heart, neural tube, and limb buds. Within the limb buds, SPC4 mRNA is most abundant in the apical ectodermal ridge (AER). At later stages of limb development, SPC4 mRNA is strongly expressed in cartilage and in the interdigital mesenchyme. In contrast, high SPC6 mRNA levels are detected in somites, the dorsal surface ectoderm, and in vertebral cartilage primordia. In limb buds, SPC6 is strongly expressed in the AER, and at later stages in dorsal mesenchyme. A comparison of these expression patterns with those of several bone morphogenetic proteins (BMPs) indicates that processing of these growth factors may be limited by the local availability of SPCs.
Can Aztekin, Jixing Zhong, Georgios Tsissios, Evangelia Skoufa
,