HiggsinoIn particle physics, for models with N=1 supersymmetry a higgsino, symbol _Higgsino, is the superpartner of the Higgs field. A higgsino is a Dirac fermionic field with spin and it refers to a weak isodoublet with hypercharge half under the Standard Model gauge symmetries. After electroweak symmetry breaking higgsino fields linearly mix with U(1) and SU(2) gauginos leading to four neutralinos and two charginos that refer to physical particles.
Cauchy boundary conditionIn mathematics, a Cauchy (koʃi) boundary condition augments an ordinary differential equation or a partial differential equation with conditions that the solution must satisfy on the boundary; ideally so as to ensure that a unique solution exists. A Cauchy boundary condition specifies both the function value and normal derivative on the boundary of the domain. This corresponds to imposing both a Dirichlet and a Neumann boundary condition. It is named after the prolific 19th-century French mathematical analyst Augustin-Louis Cauchy.
Mixed boundary conditionIn mathematics, a mixed boundary condition for a partial differential equation defines a boundary value problem in which the solution of the given equation is required to satisfy different boundary conditions on disjoint parts of the boundary of the domain where the condition is stated. Precisely, in a mixed boundary value problem, the solution is required to satisfy a Dirichlet or a Neumann boundary condition in a mutually exclusive way on disjoint parts of the boundary.
Supersymmetry breakingIn particle physics, supersymmetry breaking is the process to obtain a seemingly non-supersymmetric physics from a supersymmetric theory which is a necessary step to reconcile supersymmetry with actual experiments. It is an example of spontaneous symmetry breaking. In supergravity, this results in a slightly modified counterpart of the Higgs mechanism where the gravitinos become massive. Supersymmetry breaking occurs at supersymmetry breaking scale.
Beta function (physics)In theoretical physics, specifically quantum field theory, a beta function, β(g), encodes the dependence of a coupling parameter, g, on the energy scale, μ, of a given physical process described by quantum field theory. It is defined as and, because of the underlying renormalization group, it has no explicit dependence on μ, so it only depends on μ implicitly through g. This dependence on the energy scale thus specified is known as the running of the coupling parameter, a fundamental feature of scale-dependence in quantum field theory, and its explicit computation is achievable through a variety of mathematical techniques.
Split supersymmetryIn particle physics, split supersymmetry is a proposal for physics beyond the Standard Model. It was proposed separately in three papers. The first by James Wells in June 2003 in a more modest form that mildly relaxed the assumption about naturalness in the Higgs potential. In May 2004 Nima Arkani-Hamed and Savas Dimopoulos argued that naturalness in the Higgs sector may not be an accurate guide to propose new physics beyond the Standard Model and argued that supersymmetry may be realized in a different fashion that preserved gauge coupling unification and has a dark matter candidate.
Quantum field theoryIn theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. QFT treats particles as excited states (also called quanta) of their underlying quantum fields, which are more fundamental than the particles.
RenormalizationRenormalization is a collection of techniques in quantum field theory, statistical field theory, and the theory of self-similar geometric structures, that are used to treat infinities arising in calculated quantities by altering values of these quantities to compensate for effects of their self-interactions. But even if no infinities arose in loop diagrams in quantum field theory, it could be shown that it would be necessary to renormalize the mass and fields appearing in the original Lagrangian.
Extended supersymmetryIn theoretical physics, extended supersymmetry is supersymmetry whose infinitesimal generators carry not only a spinor index , but also an additional index where is integer (such as 2 or 4). Extended supersymmetry is also called , supersymmetry, for example. Extended supersymmetry is very important for analysis of mathematical properties of quantum field theory and superstring theory. The more extended supersymmetry is, the more it constrains physical observables and parameters.
SymmetrySymmetry () in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is invariant under some transformations, such as translation, reflection, rotation, or scaling. Although these two meanings of the word can sometimes be told apart, they are intricately related, and hence are discussed together in this article.