Arithmetic combinatoricsIn mathematics, arithmetic combinatorics is a field in the intersection of number theory, combinatorics, ergodic theory and harmonic analysis. Arithmetic combinatorics is about combinatorial estimates associated with arithmetic operations (addition, subtraction, multiplication, and division). Additive combinatorics is the special case when only the operations of addition and subtraction are involved. Ben Green explains arithmetic combinatorics in his review of "Additive Combinatorics" by Tao and Vu.
Lagrangian systemIn mathematics, a Lagrangian system is a pair (Y, L), consisting of a smooth fiber bundle Y → X and a Lagrangian density L, which yields the Euler–Lagrange differential operator acting on sections of Y → X. In classical mechanics, many dynamical systems are Lagrangian systems. The configuration space of such a Lagrangian system is a fiber bundle Q → R over the time axis R. In particular, Q = R × M if a reference frame is fixed. In classical field theory, all field systems are the Lagrangian ones.
Hermann MinkowskiHermann Minkowski (mɪŋˈkɔːfski,_-ˈkɒf-; mɪŋˈkɔfski; 22 June 1864 – 12 January 1909) was a German mathematician and professor at Königsberg, Zürich and Göttingen. He created and developed the geometry of numbers and used geometrical methods to solve problems in number theory, mathematical physics, and the theory of relativity. Minkowski is perhaps best known for his foundational work describing space and time as a four-dimensional space, now known as "Minkowski spacetime", which facilitated geometric interpretations of Albert Einstein's special theory of relativity (1905).
Ben Green (mathematician)Ben Joseph Green FRS (born 27 February 1977) is a British mathematician, specialising in combinatorics and number theory. He is the Waynflete Professor of Pure Mathematics at the University of Oxford. Ben Green was born on 27 February 1977 in Bristol, England. He studied at local schools in Bristol, Bishop Road Primary School and Fairfield Grammar School, competing in the International Mathematical Olympiad in 1994 and 1995. He entered Trinity College, Cambridge in 1995 and completed his BA in mathematics in 1998, winning the Senior Wrangler title.
Conserved currentIn physics a conserved current is a current, , that satisfies the continuity equation . The continuity equation represents a conservation law, hence the name. Indeed, integrating the continuity equation over a volume , large enough to have no net currents through its surface, leads to the conservation law where is the conserved quantity. In gauge theories the gauge fields couple to conserved currents. For example, the electromagnetic field couples to the conserved electric current.
Hyperbolic orthogonalityIn geometry, the relation of hyperbolic orthogonality between two lines separated by the asymptotes of a hyperbola is a concept used in special relativity to define simultaneous events. Two events will be simultaneous when they are on a line hyperbolically orthogonal to a particular time line. This dependence on a certain time line is determined by velocity, and is the basis for the relativity of simultaneity. Two lines are hyperbolic orthogonal when they are reflections of each other over the asymptote of a given hyperbola.