Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The project introduces an innovative visual method for analysing libraries and archives, with a focus on Bibliotheca Hertziana’s library collection. This collection, which dates back over a century, is examined by integrating user loan data with deep mappi ...
Deep learning algorithms are responsible for a technological revolution in a variety oftasks including image recognition or Go playing. Yet, why they work is not understood.Ultimately, they manage to classify data lying in high dimension – a feat generical ...
2021
,
Dynamical Systems (DS) are fundamental to the modeling and understanding time evolving phenomena, and have application in physics, biology and control. As determining an analytical description of the dynamics is often difficult, data-driven approaches are ...
MICROTOME PUBL2022
Speech recognition-based applications upon the advancements in artificial intelligence play an essential role to transform most aspects of modern life. However, speech recognition in real-life conditions (e.g., in the presence of overlapping speech, varyin ...
EPFL2023
In this work we introduce a manifold learning-based method for uncertainty quantification (UQ) in systems describing complex spatiotemporal processes. Our first objective is to identify the embedding of a set of high-dimensional data representing quantitie ...
2022
, ,
Predicting the evolution of systems with spatio-temporal dynamics in response to external stimuli is essential for scientific progress. Traditional equations-based approaches leverage first principles through the numerical approximation of differential equ ...
Nature Portfolio2024
, ,
Structured and grounded representation of text is typically formalized by closed information extraction, the problem of extracting an exhaustive set of (subject, relation, object) triplets that are consistent with a predefined set of entities and relations ...
Low-dimensional representations of underdamped systems often provide useful insights and analytical tractability. Here, we build such representations via information projections, obtaining an optimal model that captures the most information on observed spa ...
Integrating functions on discrete domains into neural networks is key to developing their capability to reason about discrete objects. But, discrete domains are (I) not naturally amenable to gradient-based optimization, and (II) incompatible with deep lear ...
We present a general framework for portfolio risk management in discrete time, based on a replicating martingale. This martingale is learned from a finite sample in a supervised setting. Our method learns the features necessary for an effective low-dimensi ...