Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The low er and upper bounds for the information capacity of two-layer feedforward neural networks with binary interconnections, integer thresholds for the hidden units, and zero threshold for the output unit is obtained through two steps, First, through a constructive approach based on statistical analysis, it is shown that a specifically constructed (N -2L -1) network with N input units, 2L hidden units, and one output unit is capable of implementing, with almost probability one, any dichotomy of O(W/1n W) random samples drawn from some continuous distributions, where W is the total number of weights of the network, This quantity is then used as a lower bound for the information capacity C of all (N -2L -1) networks with binary weights, Second, an upper bound is obtained and shown to be O(W) by a simple counting argument. Therefore, we have Omega(W/ln W) less than or equal to C less than or equal to O(W).
Volkan Cevher, Grigorios Chrysos, Fanghui Liu
,