Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Humans and animals constantly adapt to their environment over the course of their life. This thesis seeks to integrate various timescales of adaptation, ranging from the adaptation of synaptic connections between spiking neurons (milliseconds), rapid behav ...
Deep neural networks have become ubiquitous in today's technological landscape, finding their way in a vast array of applications. Deep supervised learning, which relies on large labeled datasets, has been particularly successful in areas such as image cla ...
The monumental progress in the development of machine learning models has led to a plethora of applications with transformative effects in engineering and science. This has also turned the attention of the research community towards the pursuit of construc ...
The choice of the shape parameter highly effects the behaviour of radial basis function (RBF) approximations, as it needs to be selected to balance between the ill-conditioning of the interpolation matrix and high accuracy. In this paper, we demonstrate ho ...
The dynamics of neuron populations during diverse tasks often evolve on low-dimensional manifolds. However, it remains challenging to discern the contributions of geometry and dynamics for encoding relevant behavioural variables. Here, we introduce an unsu ...
Deep learning has achieved remarkable success in various challenging tasks such as generating images from natural language or engaging in lengthy conversations with humans.The success in practice stems from the ability to successfully train massive neural ...
The way biological brains carry out advanced yet extremely energy efficient signal processing remains both fascinating and unintelligible. It is known however that at least some areas of the brain perform fast and low-cost processing relying only on a smal ...
Objective. Peripheral nerve interfaces have the potential to restore sensory, motor, and visceral functions. In particular, intraneural interfaces allow targeting deep neural structures with high selectivity, even if their performance strongly depends upon ...
Hyperdimensional (HD) computing is a novel approach to machine learning inspired by neuroscience, which uses vectors in a hyper-dimensional space to represent data and models. This approach has gained significant interest in recent years with applications ...
How the 'what', 'where', and 'when' of past experiences are stored in episodic memories and retrieved for suitable decisions remains unclear. In an effort to address these questions, the authors present computational models of neural networks that behave l ...