**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# A Recursive Acceleration Technique for Static Potential Green's Functions of a Rectangular Cavity Combining Image and Modal Series

Abstract

A hybrid acceleration algorithm for the computation of the static potential Green’s functions of a rectangular cavity is proposed. Similarly to Ewald’s method, it combines the series expansions in terms of images and modes. The main particularity with respect to Ewald resides in the fact that it does not need the evaluation of a non-algebraic function such as the complementary error function (erfc) while maintaining the rapid convergence of the Ewald technique. Finally, the method requires the computation of eight terms (original source plus seven images) and of several modal series corresponding to bigger cavities, which can be efficiently performed. Numerical results are provided to verify the feasibility of the algorithm, which appears as a promising alternative to the existing methods in the literature.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (33)

Related publications (72)

Related MOOCs (30)

Analyse I

Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond

Analyse I (partie 1) : Prélude, notions de base, les nombres réels

Concepts de base de l'analyse réelle et introduction aux nombres réels.

Analyse I (partie 2) : Introduction aux nombres complexes

Introduction aux nombres complexes

In mathematics and computational science, the Euler method (also called the forward Euler method) is a first-order numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. It is the most basic explicit method for numerical integration of ordinary differential equations and is the simplest Runge–Kutta method. The Euler method is named after Leonhard Euler, who first proposed it in his book Institutionum calculi integralis (published 1768–1870).

In mathematics, a series expansion is a technique that expresses a function as an infinite sum, or series, of simpler functions. It is a method for calculating a function that cannot be expressed by just elementary operators (addition, subtraction, multiplication and division). The resulting so-called series often can be limited to a finite number of terms, thus yielding an approximation of the function. The fewer terms of the sequence are used, the simpler this approximation will be. Often, the resulting inaccuracy (i.

In mathematics, an asymptotic expansion, asymptotic series or Poincaré expansion (after Henri Poincaré) is a formal series of functions which has the property that truncating the series after a finite number of terms provides an approximation to a given function as the argument of the function tends towards a particular, often infinite, point. Investigations by revealed that the divergent part of an asymptotic expansion is latently meaningful, i.e. contains information about the exact value of the expanded function.

Isogeometric analysis (IGA) was introduced to integrate methods for analysis and computer-aided design (CAD) into a unified process. High-quality parameterization of a physical domain plays a crucial role in IGA. However, obtaining high-quality parameteriz ...

Jean-Yves Le Boudec, Seyed Mohammadhossein Tabatabaee

Total Flow Analysis (TFA) is a method for the worst-case analysis of time-sensitive networks. It uses service curve characterizations of the network nodes and arrival curves of flows at their sources; for tractability, the latter are often taken to be line ...

2023Assyr Abdulle, Giacomo Rosilho De Souza

We introduce a local adaptive discontinuous Galerkin method for convection-diffusion-reaction equations. The proposed method is based on a coarse grid and iteratively improves the solution's accuracy by solving local elliptic problems in refined subdomains ...