Regular polytopeIn mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry. All its elements or j-faces (for all 0 ≤ j ≤ n, where n is the dimension of the polytope) — cells, faces and so on — are also transitive on the symmetries of the polytope, and are regular polytopes of dimension ≤ n. Regular polytopes are the generalized analog in any number of dimensions of regular polygons (for example, the square or the regular pentagon) and regular polyhedra (for example, the cube).
Plane curveIn mathematics, a plane curve is a curve in a plane that may be either a Euclidean plane, an affine plane or a projective plane. The most frequently studied cases are smooth plane curves (including piecewise smooth plane curves), and algebraic plane curves. Plane curves also include the Jordan curves (curves that enclose a region of the plane but need not be smooth) and the graphs of continuous functions. A plane curve can often be represented in Cartesian coordinates by an implicit equation of the form for some specific function f.
Set functionIn mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line which consists of the real numbers and A set function generally aims to subsets in some way. Measures are typical examples of "measuring" set functions. Therefore, the term "set function" is often used for avoiding confusion between the mathematical meaning of "measure" and its common language meaning.
Line–line intersectionIn Euclidean geometry, the intersection of a line and a line can be the empty set, a point, or another line. Distinguishing these cases and finding the intersection have uses, for example, in computer graphics, motion planning, and collision detection. In three-dimensional Euclidean geometry, if two lines are not in the same plane, they have no point of intersection and are called skew lines.
Disjoint unionIn mathematics, a disjoint union (or discriminated union) of a family of sets is a set often denoted by with an injection of each into such that the of these injections form a partition of (that is, each element of belongs to exactly one of these images). A disjoint union of a family of pairwise disjoint sets is their union. In , the disjoint union is the coproduct of the , and thus defined up to a bijection. In this context, the notation is often used. The disjoint union of two sets and is written with infix notation as .
Convex polygonIn geometry, a convex polygon is a polygon that is the boundary of a convex set. This means that the line segment between two points of the polygon is contained in the union of the interior and the boundary of the polygon. In particular, it is a simple polygon (not self-intersecting). Equivalently, a polygon is convex if every line that does not contain any edge intersects the polygon in at most two points. A strictly convex polygon is a convex polygon such that no line contains two of its edges.
Tangent vectorIn mathematics, a tangent vector is a vector that is tangent to a curve or surface at a given point. Tangent vectors are described in the differential geometry of curves in the context of curves in Rn. More generally, tangent vectors are elements of a tangent space of a differentiable manifold. Tangent vectors can also be described in terms of germs. Formally, a tangent vector at the point is a linear derivation of the algebra defined by the set of germs at .
Borel setIn mathematics, a Borel set is any set in a topological space that can be formed from open sets (or, equivalently, from closed sets) through the operations of countable union, countable intersection, and relative complement. Borel sets are named after Émile Borel. For a topological space X, the collection of all Borel sets on X forms a σ-algebra, known as the Borel algebra or Borel σ-algebra. The Borel algebra on X is the smallest σ-algebra containing all open sets (or, equivalently, all closed sets).
Sigma-additive set functionIn mathematics, an additive set function is a function mapping sets to numbers, with the property that its value on a union of two disjoint sets equals the sum of its values on these sets, namely, If this additivity property holds for any two sets, then it also holds for any finite number of sets, namely, the function value on the union of k disjoint sets (where k is a finite number) equals the sum of its values on the sets. Therefore, an additive set function is also called a finitely additive set function (the terms are equivalent).
Convex geometryIn mathematics, convex geometry is the branch of geometry studying convex sets, mainly in Euclidean space. Convex sets occur naturally in many areas: computational geometry, convex analysis, discrete geometry, functional analysis, geometry of numbers, integral geometry, linear programming, probability theory, game theory, etc. According to the Mathematics Subject Classification MSC2010, the mathematical discipline Convex and Discrete Geometry includes three major branches: general convexity polytopes and polyhedra discrete geometry (though only portions of the latter two are included in convex geometry).