**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Device-independent state estimation based on Bell's inequalities

Abstract

The only information available about an alleged source of entangled quantum states is the amount S by which the Clauser-Horne-Shimony-Holt inequality is violated: nothing is known about the nature of the system or the measurements that are performed. We discuss how the quality of the source can be assessed in this black-box scenario, as compared to an ideal source that would produce maximally entangled states (more precisely, any state for which S=2 root 2). To this end, we present several inequivalent notions of fidelity, each one related to the use one can make of the source after having assessed it, and we derive quantitative bounds for each of them in terms of the violation S. We also derive a lower bound on the entanglement of the source as a function of S only.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (33)

Related concepts (16)

Quantum entanglement

Quantum entanglement is the phenomenon that occurs when a group of particles are generated, interact, or share spatial proximity in a way such that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics.

Bell state

The Bell's states or EPR pairs are specific quantum states of two qubits that represent the simplest examples of quantum entanglement; conceptually, they fall under the study of quantum information science. The Bell's states are a form of entangled and normalized basis vectors. This normalization implies that the overall probability of the particle being in one of the mentioned states is 1: . Entanglement is a basis-independent result of superposition.

Quantum teleportation

Quantum teleportation is a technique for transferring quantum information from a sender at one location to a receiver some distance away. While teleportation is commonly portrayed in science fiction as a means to transfer physical objects from one location to the next, quantum teleportation only transfers quantum information. The sender does not have to know the particular quantum state being transferred. Moreover, the location of the recipient can be unknown, but to complete the quantum teleportation, classical information needs to be sent from sender to receiver.

Matteo Galli, Marco Clementi, Thanavorn Poempool

Integrated quantum photonics leverages the on-chip generation of nonclassical states of light to realize key functionalities of quantum devices. Typically, the generation of such nonclassical states relies on whispering gallery mode resonators, such as int ...

Giuseppe Carleo, Stefano Barison, David Linteau

We propose an adaptive quantum algorithm to prepare accurate variational time evolved wave functions. The method is based on the projected variational quantum dynamics (pVQD) algorithm, that performs a global optimization with linear scaling in the number ...

In this thesis, we give new protocols that offer a quantum advantage for problems in ML, Physics, and Finance.Quantum mechanics gives predictions that are inconsistent with local realism.The experiment proving this fact (Bell, 1964) gives a quantum protoco ...