Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.
Organometallic rutheniumarene compounds bearing a maltol ligand have been shown to be nearly inactive in in vitro anticancer assays, presumably due to the formation of dimeric Ru-II species in aqueous solutions. In an attempt to stabilize such complexes, [Ru(eta(6)-p-cymene)(XY)Cl] (XY=pyrones or thiopyrones) complexes with different substitution pattern of the (thio)pyrone ligands have been synthesized, their structures characterized spectroscopically, and their aquation behavior investigated as well as their tumor-inhibiting potency. The aquation behavior of pyrone systems with electron-donating substituents and of thiopyrone complexes was found to be significantly different from that of the maltol-type complex reported previously. However, the formation of the dimer call be excluded as the primary reason for the inactivity of the complex because some of the stable compounds are not active in cancer cell lines either. In contrast, studies of their reactivity towards amino acids demonstrate different reactivities of the pyrone and thiopyrone complexes, and the higher stability of the latter probably renders them active against human tumor cells.