Publication

Deducing Ink Thickness Variations by a Spectral Prediction Model

Abstract

Most existing techniques for regulating the ink flow in offset presses rely oil density measurements carried out oil specially printed patches. In the present contribution. we develop a methodology to deduce ink thickness variations from spectral measurements of multichromatic halftone patches located within the printed page. For this purpose, we extend the Clapper-Yule spectral reflectance prediction model by expressing the transmittance of the colorants composed of superposed inks as a function of the ink transmittances and of fitted ink layer thicknesses. We associate to each ink all ink thickness variation factor. At print time, this ink thickness variation factor can be fitted to minimize a difference metric between predicted reflection spectrum and measured reflection spectrum. The ink thickness variations deduced from multichromatic halftones allow to clearly distinguish between normal ink volume, reduced ink volume, or increased ink volume. This information can then he used for performing control operations on the printing press. (C) 2009 Wiley periodicals, Inc. Col Res Appl, 34, 432-442. 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20541

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (29)
Ink
Ink is a gel, sol, or solution that contains at least one colorant, such as a dye or pigment, and is used to color a surface to produce an , text, or design. Ink is used for drawing or writing with a pen, brush, reed pen, or quill. Thicker inks, in paste form, are used extensively in letterpress and lithographic printing. Ink can be a complex medium, composed of solvents, pigments, dyes, resins, lubricants, solubilizers, surfactants, particulate matter, fluorescents, and other materials.
Inkjet printing
Inkjet printing is a type of computer printing that recreates a by propelling droplets of ink onto paper and plastic substrates. Inkjet printers were the most commonly used type of printer in 2008, and range from small inexpensive consumer models to expensive professional machines. By 2019, laser printers outsold inkjet printers by nearly a 2:1 ratio, 9.6% vs 5.1% of all computer peripherals.As of 2023, sublimation printers have outsold inkjet printers by nearly a 2:1 ratio, accounting for 9.
Printing press
A printing press is a mechanical device for applying pressure to an inked surface resting upon a print medium (such as paper or cloth), thereby transferring the ink. It marked a dramatic improvement on earlier printing methods in which the cloth, paper, or other medium was brushed or rubbed repeatedly to achieve the transfer of ink and accelerated the process. Typically used for texts, the invention and global spread of the printing press was one of the most influential events in the second millennium.
Show more
Related publications (34)

Printed degradable piezoelectric microsystems: From ink formulation to device fabrication and characterization

Morgan Mc Kay Monroe

As the world moves further and further into the semiconductor era, the amount of waste generated from electronics ("e-waste") is increasing rapidly and unsustainably. Of particular note, alternatives to lead-based piezoelectric materials must be establishe ...
EPFL2023

A Sprayable Electrically Conductive Edible Coating for Piezoresistive Strain Sensing

Dario Floreano, Bokeon Kwak, Pietro Rossi

Edible electronics leverages the electronic properties of food-derived materials to deliver safer technologies that can be degraded (or digested) in the environment (or body) at the end-of-life. Sensors will be central to future smart edible robots, and ed ...
2023

Functional Ink Formulation for Printing and Coating of Graphene and Other 2D Materials: Challenges and Solutions

Frank Nüesch, Jakob Heier, Sina Abdolhosseinzadeh, Mohammad Jafarpour

The properties of 2D materials are unparalleled when compared to their 3D counterparts; many of these properties are a consequence of their size reduction to only a couple of atomic layers. Metallic, semiconducting, and insulating types can be found and fo ...
WILEY2022
Show more
Related MOOCs (3)
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Microstructure Fabrication Technologies I
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.