Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Knowledge of T-1 relaxation times can be important for accurate relative and absolute quantification of brain metabolites, for sensitivity optimizations, for characterizing molecular dynamics, and for studying changes induced by various pathological conditions. H-1 T-1 relaxation times of a series of brain metabolites, including J-coupled ones, were determined using a progressive saturation (PS) technique that was validated with an adiabatic inversion-recovery (IR) method. The H-1 T-1 relaxation times of 16 functional groups of the neurochemical profile were measured at 14.1T and 9.4T. Overall, the T-1 relaxation times found at 14.1T were, within the experimental error, identical to those at 9.4T. The T(1)s of some coupled spin resonances of the neurochemical profile were measured for the first time (e.g., those of gamma-aminobutyrate [GABA], aspartate [Asp], alanine [Ala], phosphoethanolamine [PE], glutathione [GSH], N-acety-laspartylglutamate [NAAG], and glutamine [Gin]). Our results suggest that T-1 does not increase substantially beyond 9.4T. Furthermore, the similarity of T, among the metabolites (similar to 1.5 s) suggests that T-1 relaxation time corrections for metabolite quantification are likely to be similar when using rapid pulsing conditions. We therefore conclude that the putative T-1 increase of metabolites has a minimal impact on sensitivity when increasing B-0 beyond 9.4T. Magn Reson Med 62:862-867, 2009. (C) 2009 Wiley-Liss, Inc.
Andrea Capozzi, Jean-Noël Hyacinthe, Thanh Phong Kevin Lê
Rolf Gruetter, Cristina Ramona Cudalbu, Dunja Simicic, Veronika Rackayová, Guillaume Donati