Orbital Currents in Extended Hubbard Models of High-T-c Cuprate Superconductors
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The noncentrosymmetric superconductor Mo3Rh2N, with T-c = 4.6 K, adopts a beta-Mn-type structure (space group P4(1)32), similar to that of Mo3Al2C. Its bulk superconductivity was characterized by magnetization and heat-capacity measurements, while its micr ...
One of the most unique and robust experimental facts about iron-based superconductors is the renormalization of the electronic band dispersion by factor of 3 and more near the Fermi level. Obviously related to the electron pairing, this prominent deviation ...
High-temperature superconductivity in cuprates emerges as one out of many electronic phases when doping the antiferromagnetic Mott insulator La2CuO4 away from half lling. The description of the superconducting phase is therefore complicated by intertwined ...
Iron based high temperature superconductors have several common features with superconducting cuprates, including the square lattice and the proximity to an antiferromagnetic phase. The magnetic excitation spectrum below T-c of Fe1.02Te0.7Se0.3 shows an ho ...
Electronic spin and orbital (dd) excitation spectra of (CaxLa1−x )(Ba1.75−xLa0.25+x)Cu3Oy samples are measured by resonant inelastic x-ray scattering (RIXS). In this compound, Tc of samples with identical hole dopings is strongly affected by the Ca/Ba subs ...
We demonstrate that images of flux vortices in a superconductor taken with a transmission electron microscope can be used to measure the penetration depth and coherence length in all directions at the same temperature and magnetic field. This is particular ...
Spin-dependent scattering from magnetic impurities inside a superconductor gives rise to Yu-Shiba-Rusinov (YSR) states within the superconducting gap. They can be modeled by the largely equivalent Kondo or Anderson impurity models. The role of the magnetic ...
By introducing a superconducting gap in Weyl or Dirac semimetals, the superconducting state inherits the nontrivial topology of their electronic structure. As a result, Weyl superconductors are expected to host exotic phenomena, such as nonzero-momentum pa ...
The binary Re1-xMox alloys, known to cover the full range of solid solutions, were successfully synthesized and their crystal structures and physical properties investigated via powder x-ray diffraction, electrical resistivity, magnetic susceptibility, and ...
In materials where electrons interact strongly, a number of exotic and exciting phenomena arise. The mechanisms at the base of many of these phenomena remain debated, as strongly correlated electron physics represents one of the biggest challenges for mode ...