Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
As dictated by ongoing technology scaling and the advent of multi-core systems, each new generation of microprocessors and digital signal processors provides higher computing power and data throughput. However, the available bandwidth of the input/output ( ...
Systems-on-Chip (SoC) design involves several challenges, stemming from the extreme miniaturization of the physical features and from the large number of devices and wires on a chip. Since most SoCs are used within embedded systems, specific concerns are i ...
It has already been a few years since the first appearance of micro-electromechanical systems (MEMS) in academic research. Since then, a broad number of devices have been designed under this generic term. Bulk-acoustic wave (BAW) resonators are among the f ...
After years of intensive research effort, the design of RF integrated circuits in CMOS has now reached a wide acceptance for industrial designs. This is due to the high unity gain frequency and low-noise performance of today's deep sub micrometer MOS trans ...
When designing a System-on-Chip (SoC) using a Network-on- Chip (NoC), silicon area and power consumption are two key elements to optimize. A dominant part of the NoC area and power consumption is due to the buffers in the Network Interfaces (NIs) needed to ...
We present the first fully CMOS-integrated 3D Hall probe. The microsystem is developed for precise magnetic field measurements in the range from mT up to tens of tesla in the frequency range from DC to 30 kHz and with a spatial resolution of about 150 μm. ...
Networks-on-chip provide an elegant framework to efficiently reuse predesigned cores. However, reuse of cores is jeopardized by new deep sub-micron noise effects that challenge the reliability of CMOS technology. Moreover, noise margins are further reduced ...
In this paper, we present an experimental current-mode Kohonen neural network (KNN) implemented in a CMOS 0.18 μm process. The network contains four output neurons. Each neuron has three analog weights related to three inputs. The presented KNN has been re ...