Optical phase spaceIn quantum optics, an optical phase space is a phase space in which all quantum states of an optical system are described. Each point in the optical phase space corresponds to a unique state of an optical system. For any such system, a plot of the quadratures against each other, possibly as functions of time, is called a phase diagram. If the quadratures are functions of time then the optical phase diagram can show the evolution of a quantum optical system with time.
Sonata formSonata form (also sonata-allegro form or first movement form) is a musical structure generally consisting of three main sections: an exposition, a development, and a recapitulation. It has been used widely since the middle of the 18th century (the early Classical period). While it is typically used in the first movement of multi-movement pieces, it is sometimes used in subsequent movements as well—particularly the final movement.
Atmospheric waveAn atmospheric wave is a periodic disturbance in the fields of atmospheric variables (like surface pressure or geopotential height, temperature, or wind velocity) which may either propagate (traveling wave) or not (standing wave). Atmospheric waves range in spatial and temporal scale from large-scale planetary waves (Rossby waves) to minute sound waves. Atmospheric waves with periods which are harmonics of 1 solar day (e.g. 24 hours, 12 hours, 8 hours... etc.) are known as atmospheric tides.
Initial value problemIn multivariable calculus, an initial value problem (IVP) is an ordinary differential equation together with an initial condition which specifies the value of the unknown function at a given point in the domain. Modeling a system in physics or other sciences frequently amounts to solving an initial value problem. In that context, the differential initial value is an equation which specifies how the system evolves with time given the initial conditions of the problem.
Exchange matrixIn mathematics, especially linear algebra, the exchange matrices (also called the reversal matrix, backward identity, or standard involutory permutation) are special cases of permutation matrices, where the 1 elements reside on the antidiagonal and all other elements are zero. In other words, they are 'row-reversed' or 'column-reversed' versions of the identity matrix. If J is an n × n exchange matrix, then the elements of J are Premultiplying a matrix by an exchange matrix flips vertically the positions of the former's rows, i.
Orbital maneuverIn spaceflight, an orbital maneuver (otherwise known as a burn) is the use of propulsion systems to change the orbit of a spacecraft. For spacecraft far from Earth (for example those in orbits around the Sun) an orbital maneuver is called a deep-space maneuver (DSM). The rest of the flight, especially in a transfer orbit, is called coasting.
Hamiltonian opticsHamiltonian optics and Lagrangian optics are two formulations of geometrical optics which share much of the mathematical formalism with Hamiltonian mechanics and Lagrangian mechanics. Hamilton's principle In physics, Hamilton's principle states that the evolution of a system described by generalized coordinates between two specified states at two specified parameters σA and σB is a stationary point (a point where the variation is zero) of the action functional, or where and is the Lagrangian.
Earth's orbitEarth orbits the Sun at an average distance of 149.60 million km (92.96 million mi) in a counterclockwise direction as viewed from above the Northern Hemisphere. One complete orbit takes 365.256 days (1 sidereal year), during which time Earth has traveled 940 million km (584 million mi). Ignoring the influence of other Solar System bodies, Earth's orbit, also known as Earth's revolution, is an ellipse with the Earth-Sun barycenter as one focus with a current eccentricity of 0.0167.