Publication

Adaptive neuro-fuzzy inference system in modelling fatigue life of multidirectional composite laminates

2008
Journal paper
Abstract

Adaptive neuro-fuzzy inference system (ANFIS) has been successfully used for the modelling of fatigue behaviour of a multidirectional composite laminate. The evaluation of the neuro-fuzzy model has been performed using a data base containing 257 valid fatigue data points. Coupons were cut at 0 degrees on-axis and 15 degrees, 30 degrees,45 degrees, 60 degrees, 75 degrees, and 90 degrees off-axis directions from an E-glass/polyester multidirectional laminate with a stacking sequence of O/(+/- 45)(2)/O. Constant amplitude fatigue tests at different tensile and compressive conditions were conducted for the determination of the 17 S-N curves. The modelling accuracy of this novel, in this field, computational technique is very high. For all cases studied, it has been proved that a portion of around 50% of the available data are adequate for accurate modelling of the fatigue behaviour of the material under consideration. The new technique is a stochastic process which leads to the derivation of a multi-slope S-N curve based on the available experimental data without the need for any assumptions. Employment of this technique can lead to a substantial decrease of the experimental cost for the determination of reliable fatigue design allowables. (C) 2008 Elsevier B.V. All rights reserved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.