Preparation and characterization of antimony-doped SnO2 thin films on gold and silver substrates for electrochemical and surface plasmon resonance studies
Related publications (50)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The functionality of liquid–liquid interfaces formed between two immiscible electrolyte solutions (ITIES) can be markedly enhanced by modification with supramolecular assemblies or solid nanomaterials. The focus of this Review is recent progress involving ...
Low-dimensional van der Waals (vdW) materials can harness tightly confined polaritonic waves to deliver unique advantages for nanophotonic biosensing. The reduced dimensionality of vdW materials, as in the case of two-dimensional graphene, can greatly enha ...
In this work, we observe plasmon-induced hot electron extraction in a heterojunction between indium tin oxide nanocrystals and monolayer molybdenum disulfide. We study the sample with ultrafast differential transmission, exciting the sample at 1750 nm wher ...
We present optical absorption spectra from the ultraviolet to the visible for size selected neutral Ag-n clusters (n = 5-120) embedded in solid Ne. We compare the spectra to time-dependent density functional calculations (TDDFT) that address the influence ...
Harnessing photoexcited “hot” carriers in metallic nanostructures could define a new phase of non-equilibrium optoelectronics for photodetection and photocatalysis. Surface plasmons are considered pivotal for enabling efficient operation of hot carrier dev ...
Surface plasmons are excited at a metal/dielectric interface, through the coupling between conduction electrons and incident photons. The surface plasmon generation is therefore strongly determined by the accessibility of the surface to the incoming electr ...
We report on photo-current generation in freestanding monolayered gold nanoparticle membranes excited by using a focused laser beam. The absence of a substrate leads to a 50% increase of the photo-current at the surface plasmon resonance. This current is a ...
Currently, sensors invade into our everyday life to bring higher life standards, excellent medical diagnostic and efficient security. Plasmonic biosensors demonstrate an outstanding performance ranking themselves among best candidates for different applica ...
We report on photo-current generation in freestanding monolayered gold nanoparticle membranes excited by using a laser. The absence of a substrate leads to a 50% increase of the photocurrent at plasmon resonance. This current is attributed to a combination ...
We image the dispersion of surface plasmon polaritons in gold and silver thin films of 30 and 50 nm thickness, using angle-resolved white light spectroscopy in the Kretschmann geometry. Calibrated dispersion curves are obtained over a wavelength range span ...