Kneser graphIn graph theory, the Kneser graph K(n, k) (alternatively KGn,k) is the graph whose vertices correspond to the k-element subsets of a set of n elements, and where two vertices are adjacent if and only if the two corresponding sets are disjoint. Kneser graphs are named after Martin Kneser, who first investigated them in 1956. The Kneser graph K(n, 1) is the complete graph on n vertices. The Kneser graph K(n, 2) is the complement of the line graph of the complete graph on n vertices.
Perfect graph theoremIn graph theory, the perfect graph theorem of states that an undirected graph is perfect if and only if its complement graph is also perfect. This result had been conjectured by , and it is sometimes called the weak perfect graph theorem to distinguish it from the strong perfect graph theorem characterizing perfect graphs by their forbidden induced subgraphs. A perfect graph is an undirected graph with the property that, in every one of its induced subgraphs, the size of the largest clique equals the minimum number of colors in a coloring of the subgraph.
Turán's theoremIn graph theory, Turán's theorem bounds the number of edges that can be included in an undirected graph that does not have a complete subgraph of a given size. It is one of the central results of extremal graph theory, an area studying the largest or smallest graphs with given properties, and is a special case of the forbidden subgraph problem on the maximum number of edges in a graph that does not have a given subgraph.
Clique-widthIn graph theory, the clique-width of a graph G is a parameter that describes the structural complexity of the graph; it is closely related to treewidth, but unlike treewidth it can be small for dense graphs. It is defined as the minimum number of labels needed to construct G by means of the following 4 operations : Creation of a new vertex v with label i (denoted by i(v)) Disjoint union of two labeled graphs G and H (denoted by ) Joining by an edge every vertex labeled i to every vertex labeled j (denoted by η(i,j)), where i ≠ j Renaming label i to label j (denoted by ρ(i,j)) Graphs of bounded clique-width include the cographs and distance-hereditary graphs.
Series-parallel partial orderIn order-theoretic mathematics, a series-parallel partial order is a partially ordered set built up from smaller series-parallel partial orders by two simple composition operations. The series-parallel partial orders may be characterized as the N-free finite partial orders; they have order dimension at most two. They include weak orders and the reachability relationship in directed trees and directed series–parallel graphs. The comparability graphs of series-parallel partial orders are cographs.
Tree-depthIn graph theory, the tree-depth of a connected undirected graph is a numerical invariant of , the minimum height of a Trémaux tree for a supergraph of . This invariant and its close relatives have gone under many different names in the literature, including vertex ranking number, ordered chromatic number, and minimum elimination tree height; it is also closely related to the cycle rank of directed graphs and the star height of regular languages.
Disjoint union of graphsIn graph theory, a branch of mathematics, the disjoint union of graphs is an operation that combines two or more graphs to form a larger graph. It is analogous to the disjoint union of sets, and is constructed by making the vertex set of the result be the disjoint union of the vertex sets of the given graphs, and by making the edge set of the result be the disjoint union of the edge sets of the given graphs. Any disjoint union of two or more nonempty graphs is necessarily disconnected.
Branch-decompositionIn graph theory, a branch-decomposition of an undirected graph G is a hierarchical clustering of the edges of G, represented by an unrooted binary tree T with the edges of G as its leaves. Removing any edge from T partitions the edges of G into two subgraphs, and the width of the decomposition is the maximum number of shared vertices of any pair of subgraphs formed in this way. The branchwidth of G is the minimum width of any branch-decomposition of G.