New functionality and ultra low power: key opportunities for post-CMOS era
Related publications (34)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The down-scaling of conventional MOSFETs has led to an impending power crisis, in which static power consumption is becoming too high. In order to improve the energy-efficiency of electronic circuits, small swing switches are interesting candidates to repl ...
Over the recent decades, the balance between increasing the complexity of computer chips and simultaneously reducing cost per bit has been accommodated by down-scaling. While extremely successful in the past, this approach now faces grave limitations leadi ...
Silicon has been, and continues to be, the material support of integrated circuit (IC) technology-the enabling tool of one of the most impressive technological, industrial and social revolution of mankind. Silicon (both in monocrystalline and polycrystalli ...
With technology scaling reaching the fundamental limits of Si-CMOS in the near future, the semiconductor industry is in quest for innovation from various disciplines of integrated circuit (IC) design. At a fundamental level, technology forms the main drive ...
Silicon is an excellent detector material for electromagnetic radiation in the wavelength range of 0.1 to 1000 nm. In the visible spectral range (400-700 nm), external quantum efficiencies approaching 100% are obtained. When combined with the amazing minia ...
Power dissipation is a fundamental problem for nanoelectronic circuits. Scaling the supply voltage reduces the energy needed for switching, but the field-effect transistors (FETs) in today's integrated circuits require at least 60 mV of gate voltage to inc ...
As complementary metal–oxide–semiconductor (CMOS) scaling meets fundamental limitations, revolutionary device concepts and materials are urgently needed as alternatives or supplements to CMOS technology. Carbon nanotubes (CNTs), featuring extraordinary phy ...
We report the significant improvement obtained by a non-uniform gate capacitance made by appropriate combination of high-k and low-k regions over the tunneling and the channel regions of a heterostucture TFET (called HKLKFFET). In addition to significantly ...
Multi-gate devices e.g. gate-all-around (GAA) Si nanowires and FinFETs are promising can- didates for aggressive CMOS downscaling. Optimum subthreshold slope, immunity against short channel effect and optimized power consumption are the major benefits of s ...
The aim of this research is to develop and to evaluate devices and circuits performances based on ultrathin nanograin polysilicon wire (polySiNW) dedicated to room temperature operated hybrid CMOS-"nano" integrated circuits. The proposed polySiNW device is ...