Publication

Background removal in scanning tunneling spectroscopy of single atoms and molecules on metal surfaces

Klaus Kern, Peter Wahl
2008
Journal paper
Abstract

Scanning tunneling spectroscopy has developed into a powerful spectroscopic technique that has found wide application in the atomic scale characterization of the electronic properties of clean surfaces as well as adsorbates and defects at surfaces. However, it still lacks the standard methods for data treatment and removal of artifacts in spectra as they are, e.g., common in photoemission spectroscopy. The properties of the atomic scale tip apex-the probe of the instrument-tend to introduce spurious background signals into tunneling spectra. We present and discuss two methods which permit to extract tip-independent information from low temperature tunneling spectra acquired on single atoms and molecules on single crystal surfaces by background subtraction. The methods rely on a characterization of the tip on the clean metal surface. The performance of both methods is demonstrated and compared for simulated and experimental tunneling spectra. (C) 2008 American Institute of Physics.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.