Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Symmetric multilevel diversity coding was introduced by Roche et al, where a set of K information sources is encoded by K encoders and the decoders reconstruct sources 1, . . . , k, where k is the number of encoders to which they have access. In this paper, we formulate an asymmetric multilevel diversity coding problem, where a set of 2(K)-1 information sources is encoded by K encoders into K streams/descriptions. There are 2(K)-1 decoders, each of which has access to a non-empty subset of the encoded messages. The decoders are assigned with ordered levels, and each of them has to decode a subset of the information sources, according to its level, which depends on the set of encoders to which it has access, not just the cardinality. We obtain a single letter characterization of the complete achievable rate region for the 3-description problem. In doing so, we show that it is necessary to jointly encode independent sources (i.e., similar to network coding), and that linear codes are optimal for this problem.
Michael Christoph Gastpar, Sung Hoon Lim, Adriano Pastore, Chen Feng