Boolean algebraIn mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variables are the truth values true and false, usually denoted 1 and 0, whereas in elementary algebra the values of the variables are numbers. Second, Boolean algebra uses logical operators such as conjunction (and) denoted as ∧, disjunction (or) denoted as ∨, and the negation (not) denoted as ¬.
Algebraic data typeIn computer programming, especially functional programming and type theory, an algebraic data type (ADT) is a kind of composite type, i.e., a type formed by combining other types. Two common classes of algebraic types are product types (i.e., tuples and records) and sum types (i.e., tagged or disjoint unions, coproduct types or variant types). The values of a product type typically contain several values, called fields. All values of that type have the same combination of field types.
Boolean algebra (structure)In abstract algebra, a Boolean algebra or Boolean lattice is a complemented distributive lattice. This type of algebraic structure captures essential properties of both set operations and logic operations. A Boolean algebra can be seen as a generalization of a power set algebra or a field of sets, or its elements can be viewed as generalized truth values. It is also a special case of a De Morgan algebra and a Kleene algebra (with involution).
AbstractionAbstraction is a conceptual process wherein general rules and concepts are derived from the usage and classification of specific examples, literal (real or concrete) signifiers, first principles, or other methods. "An abstraction" is the outcome of this process—a concept that acts as a common noun for all subordinate concepts and connects any related concepts as a group, field, or category. Conceptual abstractions may be formed by filtering the information content of a concept or an observable phenomenon, selecting only those aspects which are relevant for a particular purpose.
Fragment (logic)In mathematical logic, a fragment of a logical language or theory is a subset of this logical language obtained by imposing syntactical restrictions on the language. Hence, the well-formed formulae of the fragment are a subset of those in the original logic. However, the semantics of the formulae in the fragment and in the logic coincide, and any formula of the fragment can be expressed in the original logic.
Philosophy of logicPhilosophy of logic is the area of philosophy that studies the scope and nature of logic. It investigates the philosophical problems raised by logic, such as the presuppositions often implicitly at work in theories of logic and in their application. This involves questions about how logic is to be defined and how different logical systems are connected to each other. It includes the study of the nature of the fundamental concepts used by logic and the relation of logic to other disciplines.
Abstract data typeIn computer science, an abstract data type (ADT) is a mathematical model for data types. An abstract data type is defined by its behavior (semantics) from the point of view of a user, of the data, specifically in terms of possible values, possible operations on data of this type, and the behavior of these operations. This mathematical model contrasts with data structures, which are concrete representations of data, and are the point of view of an implementer, not a user.
Persistent data structureIn computing, a persistent data structure or not ephemeral data structure is a data structure that always preserves the previous version of itself when it is modified. Such data structures are effectively immutable, as their operations do not (visibly) update the structure in-place, but instead always yield a new updated structure. The term was introduced in Driscoll, Sarnak, Sleator, and Tarjans' 1986 article. A data structure is partially persistent if all versions can be accessed but only the newest version can be modified.
Complete Boolean algebraIn mathematics, a complete Boolean algebra is a Boolean algebra in which every subset has a supremum (least upper bound). Complete Boolean algebras are used to construct Boolean-valued models of set theory in the theory of forcing. Every Boolean algebra A has an essentially unique completion, which is a complete Boolean algebra containing A such that every element is the supremum of some subset of A. As a partially ordered set, this completion of A is the Dedekind–MacNeille completion.
Presburger arithmeticPresburger arithmetic is the first-order theory of the natural numbers with addition, named in honor of Mojżesz Presburger, who introduced it in 1929. The signature of Presburger arithmetic contains only the addition operation and equality, omitting the multiplication operation entirely. The axioms include a schema of induction. Presburger arithmetic is much weaker than Peano arithmetic, which includes both addition and multiplication operations. Unlike Peano arithmetic, Presburger arithmetic is a decidable theory.