Bayesian Gaussian Process Models: PAC-Bayesian Generalisation Error Bounds and Sparse Approximations
Related publications (50)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this thesis, we investigate the use of posterior probabilities of sub-word units directly as input features for automatic speech recognition (ASR). These posteriors, estimated from data-driven methods, display some favourable properties such as increase ...
In this thesis, we investigate the use of posterior probabilities of sub-word units directly as input features for automatic speech recognition (ASR). These posteriors, estimated from data-driven methods, display some favourable properties such as increase ...
We present a framework for efficient, accurate approximate Bayesian inference in generalized linear models (GLMs), based on the expectation propagation (EP) technique. The parameters can be endowed with a factorizing prior distribution, encoding properties ...
This work describes a solution to the validation challenge problem posed at the SANDIA Validation Challenge Workshop, May 21-23, 2006, NM. It presents and applies a general methodology to it. The solution entails several standard steps, namely selecting an ...
This paper aims at investigating the use of sequential clustering for speaker diarization. Conventional diarization systems are based on parametric models and agglomerative clustering. In our previous work we proposed a non-parametric method based on the a ...
We propose a new method for performing active contour segmentation based on the statistical prior knowledge of the object to detect. From a binary training set of objects, a statistical map describes the possible shapes of the object by computing the proba ...
Generalized linear models are the most commonly used tools to describe the stimulus selectivity of sensory neurons. Here we present a Bayesian treatment of such models. Using the expectation propagation algorithm, we are able to approximate the full poster ...
The framework of graphical models is a cornerstone of applied Statistics, allowing for an intuitive graphical specification of the main features of a model, and providing a basis for general Bayesian inference computations though belief propagation (BP). I ...
This paper aims at investigating the use of sequential clustering for speaker diarization. Conventional diarization systems are based on parametric models and agglomerative clustering. In our previous work we proposed a non-parametric method based on the a ...
Bayesian inference of posterior parameter distributions has become widely used in hydrological modeling to estimate the associated modeling uncertainty. The classical underlying statistical model assumes a Gaussian modeling error with zero mean and a given ...