Execution (computing)Execution in computer and software engineering is the process by which a computer or virtual machine reads and acts on the instructions of a computer program. Each instruction of a program is a description of a particular action which must be carried out, in order for a specific problem to be solved. Execution involves repeatedly following a 'fetch–decode–execute' cycle for each instruction done by control unit. As the executing machine follows the instructions, specific effects are produced in accordance with the semantics of those instructions.
Bounds checkingIn computer programming, bounds checking is any method of detecting whether a variable is within some bounds before it is used. It is usually used to ensure that a number fits into a given type (range checking), or that a variable being used as an array index is within the bounds of the array (index checking). A failed bounds check usually results in the generation of some sort of exception signal. As performing bounds checking during each use can be time-consuming, it is not always done.
Continuation-passing styleIn functional programming, continuation-passing style (CPS) is a style of programming in which control is passed explicitly in the form of a continuation. This is contrasted with direct style, which is the usual style of programming. Gerald Jay Sussman and Guy L. Steele, Jr. coined the phrase in AI Memo 349 (1975), which sets out the first version of the Scheme programming language. John C. Reynolds gives a detailed account of the numerous discoveries of continuations.
Java syntaxThe syntax of Java is the set of rules defining how a Java program is written and interpreted. The syntax is mostly derived from C and C++. Unlike in C++, in Java there are no global functions or variables, but there are data members which are also regarded as global variables. All code belongs to classes and all values are objects. The only exception is the primitive types, which are not represented by a class instance for performance reasons (though can be automatically converted to objects and vice versa via autoboxing).
Dynamic program analysisDynamic program analysis is analysis of computer software that involves executing the program in question (as opposed to static program analysis, which does not). Dynamic program analysis includes familiar techniques from software engineering such as unit testing, debugging, and measuring code coverage, but also includes lesser-known techniques like program slicing and invariant inference. Dynamic program analysis is widely applied in security in the form of runtime memory error detection, fuzzing, dynamic symbolic execution, and taint tracking.
Functional programmingIn computer science, functional programming is a programming paradigm where programs are constructed by applying and composing functions. It is a declarative programming paradigm in which function definitions are trees of expressions that map values to other values, rather than a sequence of imperative statements which update the running state of the program. In functional programming, functions are treated as first-class citizens, meaning that they can be bound to names (including local identifiers), passed as arguments, and returned from other functions, just as any other data type can.
Python syntax and semanticsThe syntax of the Python programming language is the set of rules that defines how a Python program will be written and interpreted (by both the runtime system and by human readers). The Python language has many similarities to Perl, C, and Java. However, there are some definite differences between the languages. It supports multiple programming paradigms, including structured, object-oriented programming, and functional programming, and boasts a dynamic type system and automatic memory management.
Existential quantificationIn predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as "there exists", "there is at least one", or "for some". It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier ("∃x" or "∃(x)" or "(∃x)"). Existential quantification is distinct from universal quantification ("for all"), which asserts that the property or relation holds for all members of the domain.
JavaScriptJavaScript (ˈdʒɑːvəskrɪpt), often abbreviated as JS, is a programming language that is one of the core technologies of the World Wide Web, alongside HTML and CSS. As of 2023, 98.7% of websites use JavaScript on the client side for webpage behavior, often incorporating third-party libraries. All major web browsers have a dedicated JavaScript engine to execute the code on users' devices. JavaScript is a high-level, often just-in-time compiled language that conforms to the ECMAScript standard.
Assertion (software development)In computer programming, specifically when using the imperative programming paradigm, an assertion is a predicate (a Boolean-valued function over the state space, usually expressed as a logical proposition using the variables of a program) connected to a point in the program, that always should evaluate to true at that point in code execution. Assertions can help a programmer read the code, help a compiler compile it, or help the program detect its own defects.