Publication

Contributions of vascular tone and structure to elastic properties of a medium-sized artery

Nikolaos Stergiopoulos
1996
Journal paper
Abstract

Isobaric compliance and distensibility of the radial artery were recently reported to be normal or slightly increased in untreated hypertensive patients. However, these findings provide no information on the intrinsic mechanical properties of the wall material. To address this question, we determined intima-media wall thickness, wall-to-lumen ratio, and incremental elastic modulus in the radial artery of 25 untreated hypertensive patients with blood pressure of 150 +/- 14/103 +/- 6 mm Hg (mean +/- SD) and 25 matched control subjects with blood pressure of 118 +/- 9/79 +/- 6 mm Hg. High-resolution echotracking for assessment of internal diameter and intima-media wall thickness was combined with measurements of blood flow velocity by Doppler and blood pressure by photoplethysmography. In addition, isobaric compliance and distensibility and incremental elastic modulus were measured at peak diameter during reactive hyperemia after a 5-minute brachial occlusion. No significant difference was found between the two groups for isobaric compliance or distensibility at baseline or during hyperemia. However, incremental elastic modulus at 100 mg Hg tended to be lower in hypertensive patients than control subjects (1.9 +/- 1.1 versus 2.5 +/- 1.2 mm Hg x 10(4), P = .1) in resting conditions. Hypertensive patients and control subjects had similar internal diameters (2.47 +/- 0.32 versus 2.41 +/- 0.35 microm), but intima-media wall thickness and wall-to-lumen ratio were significantly increased in hypertensive patients compared with control subjects (0.268 +/- 0.032 versus 0.236 +/- 0.025 mm -P < or = .01- and 0.220 +/- 0.038 versus 0.195 +/- 0.028 -P < or = .05-, respectively). Peak hyperemic blood flow response (hypertensive patients versus control subjects: 349% versus 360% increase from baseline) and reactive hyperemic dilation (7.2% versus 7.9%) were similar in amplitude and duration in the two groups. These results suggest that wall thickening is an adaptive process that reduces wall tension in hypertensive patients while preserving a normal mechanical behavior of the radial artery. This is most likely accomplished by modification of the incremental elastic modulus of wall components rather than by a change in vascular tone.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (38)
Hypertension
Hypertension (HTN or HT), also known as high blood pressure (HBP), is a long-term medical condition in which the blood pressure in the arteries is persistently elevated. High blood pressure usually does not cause symptoms. It is, however, a major risk factor for stroke, coronary artery disease, heart failure, atrial fibrillation, peripheral arterial disease, vision loss, chronic kidney disease, and dementia. Hypertension is a major cause of premature death worldwide.
Artery
An artery (: arteries) () is a blood vessel in humans and most animals that takes blood away from the heart to one or more parts of the body (tissues, lungs, brain etc.). Most arteries carry oxygenated blood; the two exceptions are the pulmonary and the umbilical arteries, which carry deoxygenated blood to the organs that oxygenate it (lungs and placenta, respectively). The effective arterial blood volume is that extracellular fluid which fills the arterial system.
Blood vessel
Blood vessels are the components of the circulatory system that transport blood throughout the human body. These vessels transport blood cells, nutrients, and oxygen to the tissues of the body. They also take waste and carbon dioxide away from the tissues. Blood vessels are needed to sustain life, because all of the body's tissues rely on their functionality.
Show more
Related publications (42)

Novel theory and potential applications of central diastolic pressure decay time constant

Nikolaos Stergiopoulos, Georgios Rovas, Sokratis Anagnostopoulos, Vasiliki Bikia, Patrick Segers

Central aortic diastolic pressure decay time constant ( ) is according to the two-element Windkessel model equal to the product of total peripheral resistance (R) times total arterial compliance (C ). As such, it is related to arterial stiffness, which has ...
2024

Modulation of Pulsatile Left Ventricular Afterload by Renal Denervation in Heart Failure With Preserved Ejection Fraction

Nikolaos Stergiopoulos, Stamatia Zoi Pagoulatou

Background:Arterial stiffening contributes to hemodynamic derangements in heart failure with preserved ejection fraction (HFpEF). We sought to investigate the impact of renal denervation on pulsatile left ventricular loading in patients with HFpEF and hype ...
Philadelphia2023

p-Aminobenzamidine attenuates cardiovascular dysfunctions in spontaneously hypertensive rats

Nikolaos Stergiopoulos, Fabiana Pereira Da Costa Fraga, Allancer Divino De Carvalho Nunes

Aims:Diminazene aceturate, a putative ACE2 activator, is susceptible to cleavage resulting in the formation of paminobenzamidine (PAB). This study aimed to investigate the effects of PAB in addressing cardiovascular dysfunctions in spontaneously hypertensi ...
PERGAMON-ELSEVIER SCIENCE LTD2022
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.