Related-key attackIn cryptography, a related-key attack is any form of cryptanalysis where the attacker can observe the operation of a cipher under several different keys whose values are initially unknown, but where some mathematical relationship connecting the keys is known to the attacker. For example, the attacker might know that the last 80 bits of the keys are always the same, even though they don't know, at first, what the bits are.
Man-in-the-middle attackIn cryptography and computer security, a man-in-the-middle attack is a cyberattack where the attacker secretly relays and possibly alters the communications between two parties who believe that they are directly communicating with each other, as the attacker has inserted themselves between the two parties. One example of a MITM attack is active eavesdropping, in which the attacker makes independent connections with the victims and relays messages between them to make them believe they are talking directly to each other over a private connection, when in fact the entire conversation is controlled by the attacker.
AlgebraAlgebra () is the study of variables and the rules for manipulating these variables in formulas; it is a unifying thread of almost all of mathematics. Elementary algebra deals with the manipulation of variables (commonly represented by Roman letters) as if they were numbers and is therefore essential in all applications of mathematics. Abstract algebra is the name given, mostly in education, to the study of algebraic structures such as groups, rings, and fields.
Meet-in-the-middle attackThe meet-in-the-middle attack (MITM), a known plaintext attack, is a generic space–time tradeoff cryptographic attack against encryption schemes that rely on performing multiple encryption operations in sequence. The MITM attack is the primary reason why Double DES is not used and why a Triple DES key (168-bit) can be brute-forced by an attacker with 256 space and 2112 operations. When trying to improve the security of a block cipher, a tempting idea is to encrypt the data several times using multiple keys.
Satisfiability modulo theoriesIn computer science and mathematical logic, satisfiability modulo theories (SMT) is the problem of determining whether a mathematical formula is satisfiable. It generalizes the Boolean satisfiability problem (SAT) to more complex formulas involving real numbers, integers, and/or various data structures such as lists, arrays, bit vectors, and strings. The name is derived from the fact that these expressions are interpreted within ("modulo") a certain formal theory in first-order logic with equality (often disallowing quantifiers).
Algebraic structureIn mathematics, an algebraic structure consists of a nonempty set A (called the underlying set, carrier set or domain), a collection of operations on A (typically binary operations such as addition and multiplication), and a finite set of identities, known as axioms, that these operations must satisfy. An algebraic structure may be based on other algebraic structures with operations and axioms involving several structures.
Collision attackIn cryptography, a collision attack on a cryptographic hash tries to find two inputs producing the same hash value, i.e. a hash collision. This is in contrast to a where a specific target hash value is specified. There are roughly two types of collision attacks: Classical collision attack Find two different messages m1 and m2 such that hash(m1) = hash(m2). More generally: Chosen-prefix collision attack Given two different prefixes p1 and p2, find two appendages m1 and m2 such that hash(p1 ∥ m1) = hash(p2 ∥ m2), where ∥ denotes the concatenation operation.
Exponential time hypothesisIn computational complexity theory, the exponential time hypothesis is an unproven computational hardness assumption that was formulated by . It states that satisfiability of 3-CNF Boolean formulas cannot be solved in subexponential time, i.e., for all constant , where n is the number of variables in the formula. The exponential time hypothesis, if true, would imply that P ≠ NP, but it is a stronger statement.
CipherIn cryptography, a cipher (or cypher) is an algorithm for performing encryption or decryption—a series of well-defined steps that can be followed as a procedure. An alternative, less common term is encipherment. To encipher or encode is to convert information into cipher or code. In common parlance, "cipher" is synonymous with "code", as they are both a set of steps that encrypt a message; however, the concepts are distinct in cryptography, especially classical cryptography.
Cube rootIn mathematics, a cube root of a number x is a number y such that y3 = x. All nonzero real numbers, have exactly one real cube root and a pair of complex conjugate cube roots, and all nonzero complex numbers have three distinct complex cube roots. For example, the real cube root of 8, denoted , is 2, because 23 = 8, while the other cube roots of 8 are and .