Throughout history, the pace of knowledge and information sharing has evolved into an unthinkable speed and media. At the end of the XVII century, in Europe, the ideas that would shape the "Age of Enlightenment" were slowly being developed in coffeehouses, ...
Machine learning (ML) enables artificial intelligent (AI) agents to learn autonomously from data obtained from their environment to perform tasks. Modern ML systems have proven to be extremely effective, reaching or even exceeding human intelligence.
Altho ...
The spatial distribution of dwarf galaxies around their host galaxies is a critical test for the standard model of cosmology because it probes the dynamics of dark matter halos and is independent of the internal baryonic processes of galaxies. Comoving pla ...
Zoning reform is a crucial tool for cities to adapt to contemporary challenges. However, its implementation remains challenging. Property owners, with a vested interest in the value of their neighborhoods, are sensitive to local developments and the potent ...
Modern optimization is tasked with handling applications of increasingly large scale, chiefly due to the massive amounts of widely available data and the ever-growing reach of Machine Learning. Consequently, this area of research is under steady pressure t ...
To support the decarbonisation of the power sector and offset the volatility of a system with high levels of renewables, there is growing interest in residential Demand-Side Management (DSM) solutions. Traditional DSM strategies require consumers to active ...
Decision-making permeates every aspect of human and societal development, from individuals' daily choices to the complex decisions made by communities and institutions.
Central to effective decision-making is the discipline of optimization, which seeks th ...
The field of biometrics, and especially face recognition, has seen a wide-spread adoption the last few years, from access control on personal devices such as phones and laptops, to automated border controls such as in airports. The stakes are increasingly ...
In this work, we investigate the effect of momentum on the optimisation trajectory of gradient descent. We leverage a continuous-time approach in the analysis of momentum gradient descent with step size γ and momentum parameter β that allows u ...
In inverse problems, the task is to reconstruct an unknown signal from its possibly noise-corrupted measurements. Penalized-likelihood-based estimation and Bayesian estimation are two powerful statistical paradigms for the resolution of such problems. They ...