Information Processing and Structure of Dynamical Networks
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Studying real-world networks such as social networks or web networks is a challenge. These networks often combine a complex, highly connected structure together with a large size. We propose a new approach for large scale networks that is able to automatic ...
Spectral Graph Convolutional Networks (GCNs) are generalisations of standard convolutional for graph-structured data using the Laplacian operator. Recent work has shown that spectral GCNs have an intrinsic transferability. This work verifies this by studyi ...
Recent advances in transfer learning and few-shot learning largely rely on annotated data related to the goal task during (pre-)training. However, collecting sufficiently similar and annotated data is often infeasible. Building on advances in self-supervis ...
In time-sensitive networks, regulators can be used to reshape traffic, and their usage may be necessary to guarantee stability by providing worst-case delay bounds. In this project, I study partial regulation of time-sensitive networks with cyclic dependen ...
This project presents a pre-State Estimation method for the detection of Bad Data (BD) in Phasor Measurement Units (PMUs) using correlation analysis and a Neural Network Classifier. Presented in this paper is the algorithm design, the steps for generating ...
We develop a model that successfully learns social and organizational human network structure using ambient sensing data from distributed plug load energy sensors in commercial buildings. A key goal for the design and operation of commercial buildings is t ...
Understanding travel behaviour in transportation system is key challenge to calibrate and simulate the usage of urban mobility networks. We define in this work a path-based centrality based on the simplicity of the path between two locations in road networ ...
Adaptation and learning over multi-agent networks is a topic of great relevance with important implications. Elaborating on previous works on single-task networks engaged in decision problems, here we consider the multi-task version in the challenging scen ...
This paper studies the expressive power of graph neural networks falling within the message-passing framework (GNNmp). Two results are presented. First, GNNmp are shown to be Turing universal under sufficient conditions on their depth, width, node attribut ...
Graph-based representations underlie a wide range of scientific problems. Graph connectivity is typically represented as a sparse matrix in the Compressed Sparse Row format. Large-scale graphs rely on distributed storage, allocating distinct subsets of row ...