Publication

Infrared laser action on the spatial, velocity, and cluster-size distributions in a sulfur hexafluoride free jet

Abstract

SF6 in a free jet was vibrationally excited by a continuous-wave CO2 laser. The subsequent energy transfer processes, in which vibrational energy is degraded, lead to changes in the beam's spatial, velocity and cluster-size distributions. These changes were obsd. by mass-spectrometric techniques. The laser-induced perturbations of the free jet depend strongly on the location at which the laser beam is focused on the SF6 free jet. The largest perturbations were obsd. on irradn. close to the nozzle exit. Measurements were made for different stagnation pressures and temps., laser wavelengths and intensities. The main laser effects upon irradn. close to the nozzle are: (1) an increase in the mean velocity of the beam along the beam centroid, (2) a decrease in beam intensity measured near the center of the beam, and (3) an increase in the width of the velocity distribution (local temp.) of the beam. Effect 1 increases and effect 3 decrease the beam's Mach no., with the latter dominating and thus a net decrease results. These effects are enhanced with increasing stagnation pressure in the range 0.5-2 bar and with decreasing stagnation temp. in the range 198

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (32)
Laser
A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word laser is an anacronym that originated as an acronym for light amplification by stimulated emission of radiation. The first laser was built in 1960 by Theodore Maiman at Hughes Research Laboratories, based on theoretical work by Charles H. Townes and Arthur Leonard Schawlow. A laser differs from other sources of light in that it emits light that is coherent.
Laser safety
Laser radiation safety is the safe design, use and implementation of lasers to minimize the risk of laser accidents, especially those involving eye injuries. Since even relatively small amounts of laser light can lead to permanent eye injuries, the sale and usage of lasers is typically subject to government regulations. Moderate and high-power lasers are potentially hazardous because they can burn the retina, or even the skin.
Laser diode
A laser diode (LD, also injection laser diode or ILD, or diode laser) is a semiconductor device similar to a light-emitting diode in which a diode pumped directly with electrical current can create lasing conditions at the diode's junction. Driven by voltage, the doped p–n-transition allows for recombination of an electron with a hole. Due to the drop of the electron from a higher energy level to a lower one, radiation, in the form of an emitted photon is generated. This is spontaneous emission.
Show more
Related publications (65)

On the interaction of femtosecond laser pulses with layered dielectric materials

Ruben Ricca

Materials properties are strictly dependent on their microstructure. The internal symmetries and the disposition of the constituting atoms of a material, which depend on its crystallographic structure, greatly affect its response to mechanical, electromagn ...
EPFL2023

Mode-Specific Coupling of Nanoparticle-on-Mirror Cavities with Cylindrical Vector Beams

Christophe Marcel Georges Galland, Valeria Vento, Sachin Suresh Verlekar

Nanocavities formed by ultrathin metallic gaps permitthe reproducibleengineering and enhancement of light-matter interaction, withmode volumes reaching the smallest values allowed by quantum mechanics.While the enhanced vacuum field in metallic nanogaps ha ...
AMER CHEMICAL SOC2023

Mode-Specific Coupling of Nanoparticle-on-Mirror Cavities with Cylindrical Vector Beams

Christophe Marcel Georges Galland, Valeria Vento, Sachin Suresh Verlekar, Philippe Andreas Rölli

Nanocavities formed by ultrathin metallic gaps, such as the nanoparticle-on-mirror geometry, permit the reproducible engineering and enhancement of light-matter interaction thanks to mode volumes reaching the smallest values allowed by quantum mechanics. A ...
arXiv2023
Show more
Related MOOCs (5)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more