Feature distribution modelling techniques for 3D face recognition
Related publications (42)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The recognition of events in multimedia data is a challenging area of research. The growth in the amount of multimedia data being produced and stored increases the need for systems capable of automatically analysing this data. This analysis can aid in effi ...
Within the field of pattern recognition, biometrics is the discipline which is concerned with the automatic recognition of a person based on his/her physiological or behavioral characteristics. Face recognition, a central area in biometrics, is a very chal ...
This paper presents an approach for the segmentation of broadcast news into stories. The main novelty of this work is that the segmentation process does not take into account the content of the news, i.e. what is said, but rather the structure of the socia ...
In this paper, a novel statistical generative model to describe a face is presented, and is applied on the face authentication task. Classical generative models used so far in face recognition, such as Gaussian Mixture Models (GMM) and Hidden Markov Models ...
It is often acknowledged that speech signals contain short-term and long-term temporal properties that are difficult to capture and model by using the usual fixed scale (typically 20ms) short time spectral analysis used in hidden Markov models (HMMs), base ...
In a previous paper on speech recognition, we showed that templates can better capture the dynamics of speech signal compared to parametric models such as hidden Markov models. The key point in template matching approaches is finding the most similar templ ...
In a previous paper on speech recognition, we showed that templates can better capture the dynamics of speech signal compared to parametric models such as hidden Markov models. The key point in template matching approaches is finding the most similar templ ...
It has been previously demonstrated that systems based on Hidden Markov Models (HMMs) are suitable for face recognition. The proposed approaches in the literature are either HMMs with one-dimensional (1D-HMMs) or two-dimensional (2D-HMMs) topology. Both ha ...
This paper presents an approach for the segmentation of broadcast news into stories. The main novelty of this work is that the segmentation process does not take into account the content of the news, i.e. what is said, but rather the structure of the socia ...
It is often acknowledged that speech signals contain short-term and long-term temporal properties that are difficult to capture and model by using the usual fixed scale (typically 20ms) short time spectral analysis used in hidden Markov models (HMMs), base ...