Publication

Automatic Skill Acquisition in Reinforcement Learning Using Graph Centrality Measures

Abstract

Mechanisms on automatic discovery of macro actions or skills in reinforcement learning methods are mainly focused on subgoal discovery methods. Among the proposed algorithms, those based on graph centrality measures demonstrate a high performance gain. In this paper, we propose a new graph theoretic approach for automatically identifying and evaluating subgoals. Moreover, we propose a method for providing some useful prior knowledge for corresponding policy of developed skills based on two graph centrality measures, namely node connection graph stability and co-betweenness centrality. Investigating some benchmark problems, we show that the proposed approach improves the learning performance of the agent significantly.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.