Direct two-dimensional measurements of the eld-aligned current associated with plasma blobs
Related publications (33)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
One of the most important issues for magnetic-confinement fusion research is the so-called anomalous transport across magnetic field lines, i.e. transport that is in excess of that caused by collisional processes. The need to reduce anomalous transport in ...
Almost since the first density profile measurements were made in the scrape-off layer (SOL) of the early tokamaks, it has been recognized that the rate of particle transport perpendicular to magnetic surfaces exceeds that expected on the basis of classical ...
In magnetic confinement devices, the inhomogeneity of the confining magnetic field along a magnetic field line generates the trapping of particles (with low ratio of parallel to perpendicular velocities) within local magnetic wells. One of the consequences ...
Intermittent convective transport caused by blobs is universally observed at the edge of laboratory plasmas and it is of great importance for future fusion reactors. We present recent advances in the basic study of blob formation and propagation dynamics a ...
Intermittent convective transport caused by coherent structures, or blobs, are universally observed in the edge of laboratory plasmas. Besides being of fundamental physics interest, the dynamics of these structures in fusion reactors influence the density ...
A key issue for steady-state tokamak operation is to determine the edge conditions that are compatible both with good core confinement and with the power handling and plasma exhaust capabilities of the plasma facing components (PFCs) and divertor systems. ...
Thermonuclear controlled fusion research is a highly active branch of plasma physics. The main goal is the production of energy from the fusion reaction of hydrogen isotope nuclei, the same reaction that powers stars. The most promising present approach ar ...
Magnetohydrodynamic (MHD) instabilities and plasma rotation have various impacts on particle and thermal transport in toroidal plasmas. MHD instabilities degrade the confinement, limit the maximum achievable plasma pressure, and can lead to plasma disrupti ...
This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-μm-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design featu ...
In current-free stellarators, the parallel current density is normally too weak to drive global external kink modes. However, at finite values of beta, the bootstrap current (BC) can provide sufficient free energy to trigger this class of mode in some stel ...