Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
This work investigates the potential for harnessing the association of bacterial proteins to biogenic selenium nanoparticles (SeNPs) to control the size distribution and the morphology of the resultant SeNPs. We conducted a proteomic study and compared proteins associated with biogenic SeNPs produced by E. coli to chemically synthesized SeNPs as well as magnetite nanoparticles. We identified four proteins (AdhP, Idh, OmpC, AceA) that bound specifically to SeNPs and observed a narrower size distribution as well as more spherical morphology when the particles were synthesized chemically in the presence of proteins. A more detailed study of AdhP (alcohol dehydrogenase propanol-preferring) confirmed the strong affinity of this protein for the SeNP surface and revealed that this protein controlled the size distribution of the SeNPs and yielded a narrow size distribution with a three-fold decrease in the median size. These results support the assertion that protein may become an important tool in the industrial-scale synthesis of SeNPs of uniform size and properties.