Publication

Room Temperature, Aqueous Post-Polymerization Modification of Glycidyl Methacrylate-Containing Polymer Brushes Prepared via Surface-Initiated Atom Transfer Radical Polymerization

Harm-Anton Klok, Raphaël Barbey
2010
Journal paper
Abstract

This manuscript reports on the post-polymerization modification of poly(glycidyl methacrylate) (PGMA) and PGMA-co-poly(2-(diethylamino)ethyl methacrylate) (PGMA(x)-co-PDEAEMA(y)) (co)polymer brushes prepared via surface-initiated atom transfer radical polymerization (SI-ATRP). The aim of this study was to evaluate the ability of tertiary amine groups incorporated in the polymer brush to accelerate the ring-opening of the epoxide groups by primary amines and to facilitate the aqueous, room temperature post-polymerization modification of the brushes. Using Fourier transform infrared (FTIR) spectroscopy to monitor the ring-opening reaction of the epoxide groups, it was found that the incorporation of 2-(diethylamino)ethyl methacrylate (DEAEMA) groups in the PGMA brushes significantly accelerated the rate of the post-polymerization modification reaction with several model amines. The rate enhancement was dependent on the fraction of DEAEMA units incorporated in the copolymer brush. For example, whereas 24 h was necessary to obtain a conversion of approximately 40% for PGMA brushes immersed in a 1 M propylamine solution in water, the same conversion was reached, in identical reaction conditions, after 8 and 2 h with copolymer brushes containing 10 mol % and 25 mol % of DEAEMA along the copolymer chains, respectively. In a final series of proof-of-concept experiments, the feasibility of the glycidyl methacrylate containing brushes to act as substrates for protein immobilization was studied. Using FTIR spectroscopy and quartz crystal microbalance with dissipation (QCM-D) experiments, it could be demonstrated that the incorporation of DEAEMA units not only enhanced the rate of the protein immobilization reaction, but also resulted in higher protein binding capacities as compared to a PGMA homopolymer brush. These features make PGMAx-co-PDEAEMAy brushes very attractive candidates for the development of protein microarrays, among others.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.