Properties of light fields near sub-micro and nano-scale structures
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We study the plasmon modes of gold nanorods (as short as similar to 100 nm) on a nonmetallic conductive substrate using scanning tunneling microscope-induced light emission (STM-LE) with a nonplasmonic tungsten tip at room temperature in high vacuum (10-7 ...
We review three different approaches for the calculation of electromagnetic multipoles, namely, the Cartesian primitive multipoles, the Cartesian irreducible multipoles, and the spherical multipoles. We identify the latter as the best suited to describe th ...
Near-field mapping has been widely used to study hyperbolic phonon-polaritons in van der Waals crystals. However, an accurate measurement of the polaritonic loss remains challenging because of the inherent complexity of the near-field signal and the substr ...
Among the two materials families used in nanophotonics, the fundamental mode for metal nanostructures is electric, while that for dielectric nanostructures is magnetic. Consequently, the optical properties of hybrid dimers that incorporate both materials h ...
Plasmonic effects including near-field coupling, light scattering, guided mode through surface plasmon polaritons (SPPs), Forster resonant energy transfer (FRET), and thermoplasmonics are extensively used for harnessing inexhaustible solar energy for photo ...
We report thorough measurements of surface plasmon polaritons (SPPs) running along nearly perfect air-gold interfaces formed by atomically flat surfaces of chemically synthesized gold monocrystals. By means of amplitude-and phase-resolved near-field micros ...
In this study, we apply interferometric microscopy to study the phase, alongside the intensity, of the light field transmitted through a wide variety of samples. Additionally, we conduct those interferometric measurements at different wavelengths within th ...
Plasmonic nanostructures allow to controllably enhance linear and nonlinear light-matter interactions by concentrating the electromagnetic fields at the scales below the diffraction limit. This feature is highly desired for many applications, e.g. bio- and ...
Charge density wave (CDW) is a startling quantum phenomenon, distorting a metallic lattice into an insulating state with a periodically modulated charge distribution. Astonishingly, such modulations appear in various patterns even within the same family of ...
Using the kinetic approach, we study the impact of the charged particle dynamics due to the Schwinger effect on the electric field evolution during inflation. As a simple model of the electric field generation, we consider the kinetic coupling of the elect ...