Mode-Selective Surface-Enhanced Raman Spectroscopy Using Nanofabricated Plasmonic Dipole Antennas
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This thesis is devoted to the study of the optical properties of small metal clusters and metal cluster organic compounds. For this purpose a ultra-high vacuum (UHV) experimental apparatus has been built which allows for the deposition of mass selected neu ...
The exceptional enhancement of Raman scattering by localized plasmonic resonances in the near field of metallic nanoparticles, surfaces or tips (SERS, TERS) has enabled spectroscopic fingerprinting down to the single molecule level. The conventional explan ...
The resonant excitation of free electrons in metallic nanostructures enables extreme near field intensities along with a deep sub-wavelength localization of the electromagnetic energy. This has been exploited to enhance light-matter interaction down to the ...
Localized surface plasmons are charge density oscillations confined to metallic nanoparticles. Excitation of localized surface plasmons by an electromagnetic field at an incident wavelength where resonance occurs results in a strong light scattering and an ...
Surface plasmons are able to generate extremely strong and confined optical fields at a deep-subwavelength scale, far beyond the diffraction limit, and now play a central role in nanosciences. A proper combination of plasmonic nanostructures can support Fa ...
The development of metamaterials, i.e., artificially structured materials that interact with waves in unconventional ways, has revolutionized our ability to manipulate the propagation of electromagnetic waves and their interaction with matter. One of the m ...
Coupled plasmonic resonators have become the subject of significant research interest in recent years as they provide a route to dramatically enhanced light-matter interactions. Often, the design of these coupled mode systems draws intuition and inspiratio ...
We present an approach for rational design and optimization of plasmonic arrays for ultrasensitive surface enhanced infrared absorption (SEIRA) spectroscopy of specific protein analytes. Motivated by our previous work that demonstrated sub-attomole detecti ...
Intensive developments of plasmonic nanomaterials over recent decades have inspired appealing applications in biosensing, optical trapping, fluorescence enhancement and light harvesting in solar cells. These nanostructures supporting unique light-matter in ...
Metamaterials today are often realized as complex structured metasurfaces. Their functionality is based on combination of plasmonic resonances in metallic nanostructures and interferences. Novel concepts of bottom up fabrication using liquid crystal self-o ...