Optical interactions in a plasmonic particle coupled to a metallic film
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Surface plasmons are able to generate extremely strong and confined optical fields at a deep-subwavelength scale, far beyond the diffraction limit, and now play a central role in nanosciences. A proper combination of plasmonic nanostructures can support Fa ...
With the development of nanotechnology, many new optical phenomena in nanoscale have been demonstrated. Through the coupling of optical waves and collective oscillations of free electrons in metallic nanostructures, surface plasmon polaritons can be excite ...
We have investigated the near-field coupling of surface plasmons to a titanium/CdS nanowire interface for two different device configurations. A bare aluminum grating on an underlying aluminum layer exhibited the expected stronger electrical signal for per ...
We show that surface plasmon polaritons (SPPs) can be concentrated to subwavelength dimensions in a nanoscale dielectric wedge on a metal substrate. An adiabatic model explains how SPPs propagating on a Ag substrate covered with a thin Si film of slowly in ...
Localized surface plasmon absorption features arise at high doping levels in semiconductor nanocrystals, appearing in the near-IR range. The surface plasmons of Sn-doped In oxide nanocrystal films can be dynamically and reversibly tuned by postsynthetic el ...
Using an angle-resolved heterodyne four-wave-mixing technique, we probe the low momentum excitation spectrum of a coherent polariton gas. The experimental results are well captured by the Bogoliubov transformation which describes the transition from single ...
We describe a general theoretical framework based on the Bergman spectral representation to study how a nanostructure interacts with an external electromagnetic field. The selection rules for localized surface plasmon resonances (LSPRs) are obtained by imp ...
The study of the optoelectronic effects of plasmonic metal nanoparticles on semiconductors has led to compelling evidence for plasmon-enhanced water splitting. We review the relevant physics, device geometries, and research progress in this area. We focus ...
Surface enhanced Raman scattering (SERS) "hot spots" are the regions where the electromagnetic field is significantly enhanced, resulting in much greater SERS activity than other areas. Therefore, the engineering and characterization of "hot spots" have at ...
In nanoscopic systems, size, geometry, and arrangement are the crucial determinants of the light-matter interaction and resulting nanoparticles excitation. At optical frequencies, one of the most prominent examples is the excitation of localized surface pl ...