Spectral response of plasmon resonant nanoparticles with a non-regular shape
Related publications (54)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this work, we study how to use a plasmonic dipole antenna as a multifunctional nanodevice for surface-enhanced Raman spectroscopy (SERS), localized surface plasmon resonance (LSPR) -based sensing and optical trapping. An analytical model is implemented ...
Spie-Int Soc Optical Engineering, Po Box 10, Bellingham, Wa 98227-0010 Usa2010
We study the coupling of localized surface plasmon (LSP) and surface-plasmon polariton (SPP) modes in a system composed of a metallic nanoparticle chain separated from a thin metallic film by a dielectric spacer. The thickness of such a spacer influences t ...
By introducing the difference permittivity ratio eta=(epsilon (2)-epsilon (0))/(epsilon (1)-epsilon (0)), the Green matrix method for computing surface plasmon resonances is extended to binary nanostructures. Based on the near field coupling, the interplay ...
There has been a very strong development of the sensors based on surface plasmon resonance during the last thirty years, mostly for biological and biomedical applications. If the first experiments in this field were carried out at the beginning of the 20t ...
We present the characterization of short-range ordered hexagonal arrays of subwavelength holes in thin gold films. The hole arrays are fabricated by a low-cost technique using convectively self-assembled polystyrene beads as an initial pattern template. Ou ...
Surface enhanced Raman scattering (SERS) "hot spots" are the regions where the electromagnetic field is significantly enhanced, resulting in much greater SERS activity than other areas. Therefore, the engineering and characterization of "hot spots" have at ...
With the development of nanotechnology, many new optical phenomena in nanoscale have been demonstrated. Through the coupling of optical waves and collective oscillations of free electrons in metallic nanostructures, surface plasmon polaritons can be excite ...
Investigation on the interplay of plasmonic resonances in binary nanostructures indicated that, at a fixed wavelength, with a variation in the difference permittivity ratio eta=(epsilon(2)-epsilon(0)/epsilon(1)-epsilon(0)), resonances exhibit the dielectri ...
The extraordinary light transmission effect (EOT) through sub-wavelength nanoapertures in opaque metal films has lead to observation of a wide variety of exciting new optical phenomena. This remarkable effect is generally related to the interaction of the ...
The fabrication of gold nanodots by stencil lithography and its application for optical biosensing based on localized surface plasmon resonance are presented. Arrays of 50−200 nm wide nanodots with different spacing of 50−300 nm are fabricated without any ...